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ABSTRACT / RÉSUMÉ

Abstract

Development of efficient multiscale methods and extrapolation techniques for multiphysics
molecular chemistry
In this work, we are interested in developing new methods for molecular chemistry, in particular for
classical or quantum molecular dynamics. These methods are developed either in order to increase the
efficiency of the computations or in order to improve the description of the chemical systems considered.
We are interested in describing in a pedagogical way methods of algorithmic complexity in 𝒪(𝑁 log𝑁)
using Ewald’s method of summation for the calculation of the energy of classical chemical systems. We
also present a modification of the fast multipole method (of algorithmic complexity in 𝒪(𝑁)), allowing
its use with polarizable force fields describing the density up to quadrupoles. We will also introduce
the multiscale method qm/amoeba, which allows to describe efficiently and precisely chemical systems
containing tens of thousands of atoms. Finally, we will look at how to improve the description and the
efficiency of quantum computations by developing extrapolation methods.

Keywords: quantum mechanics, molecular mechanics, continuum solvation, molecular dynamics, force
field, high-performance computing

Résumé

Développement de méthodes multiéchelles efficaces et de techniques d’extrapolation pour
des modèles multiphysiques en chimie moléculaire
Dans ce travail, nous nous intéressons à développer de nouvelles méthodes pour la chimie moléculaire,
en particulier pour la dynamique moléculaire classique ou quantique. Ces méthodes sont développées
soit dans le but d’augmenter l’efficacité des calculs ou dans le but d’améliorer la description des systèmes
chimiques considérés. Nous nous intéresserons à décrire de façon pédagogique des méthodes de complexité
algorithmique en 𝒪(𝑁 log𝑁) utilisant la sommation d’Ewald pour le calcul de l’énergie d’un système
moléculaire chimique classique. Dans ce même contexte, nous présenterons une modification de la
méthode multipolaire rapide (de complexité algorithmique en 𝒪(𝑁)), permettant son utilisation avec des
champs de force polarisables décrivant la densité jusqu’au quadrupôles. Nous nous introduirons aussi la
méthode multiéchelle qm/amoeba, qui permet de décrire de manière efficace et précise des systèmes
chimiques contenant plusieurs dizaines de milliers d’atomes. Enfin, nous regarderons comment améliorer
la description et l’efficacité de calculs quantiques en développant des méthodes d’extrapolation.

Mots-clés : mécanique quantique, mécanique classique, solvatation implicite, dynamique moléculaire,
champs de force, calcul haute performance
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Chapter i General introduction

I.A Context

Chemistry is the science of matter and of its elements. It covers a range of fields that can go
from physics with its laws that govern the world as we experience it to biology, that studies
living organisms. Chemistry is everywhere in everyday life: synthesis of plastics from petroleum,
of drugs such as the acetylsalicylic acid — the aspirin, or the removal of contaminants from
wastewater in sewage treatment plants, to name a few. By learning how the building blocs of
matter interact with one another, we are able to understand subtle mechanism in life science,
and possibly act on these by, e.g., synthesise an ever growing catalog of compounds.

However, synthesising and evaluating physical properties of new compounds can be costly.
Thousands of molecules may have to be created to be able to find the one that works as expected.
Hence the common thread linking the difficulties we want to tackle in this work: given the myriad
of possibilities of compounds that we can synthesise for a given target, how can we improve some
existing method to help and select a small subset that seems the most promising for evaluation?

For instance, in Chapters ii to iv we will be mostly interested in having a better understanding
of existing methods (respectively about particle–mesh method, quantum mechanics/molecular
mechanics descriptions and the fast multipole method) and how to develop or improve them to
tackle complex molecular simulations. In Chapters v and vi we will look at ways to develop new
tools that could be used to replace current approaches: In the first by trying to learn from the
behaviour of families of operators, while in the second by using the geometry behind density
matrices to predict its values.

I.A.1 Mathematical chemistry

Mathematics is ubiquitous in chemistry: from differential equations that govern chemical kinetics
to combinatorics that is used for modelling crystals. Chemists have embraced mathematical tools
to model evolution of chemical systems. However, the field of chemistry has long been a mostly
uncharted territory for applied mathematicians.

As long as the available computing power was small, mathematicians with their bottom-up
approach were more inclined to look at theoretical physics. They developed tools to facilitate
the expressions of physical laws, showing that equations were indeed well-posed and sometimes
finding analytical solutions. This is a way to make theories more robust, and when gaps are
found, to make them more consistent.

On the other hand, chemists, with their top-down approach, seemed to make egregious
simplifications: sometimes using ill-posed problems or oversimplified equations. And rightly
so: the alternative would have been not having usable results. Moreover, their knowledge of
expected physical results also allowed them to develop predictive tools out of a priori non-rigorous
approaches. It was useful for developing intuition when used critically, but the class of problems
they looked at seemed too constrained and too much tinkering was involved.

However, since the 2000s and the democratisation of supercomputers, chemists have been
able to complexify simulations and use the same mix of intuition and computation to bigger and
bigger applications. And the results are impressive: in quantum mechanics using only a few
Gaussian basis functions that may exhibit linear dependency issues, they can predict quickly and
with remarkable accuracy physical properties of molecular systems; in molecular mechanics they
can simulate viruses of millions of atoms to be able to fine-tune molecular inhibitors, etc [Kar14;
Lev14; War14; El +21].

These results are too impressive to be ignored. However, there is room from improvement: in
the choice of algorithms used to solve some problems, in the efficient use of clusters of computers,
in removing tinkering for the choice of basis functions for quantum mechanics or the manual
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i.b Drug design as a practical application

approach to fix some parameters in molecular mechanics, in providing error bounds on results,
etc.

I.A.2 Modellingmatter accurately at a small scale

We make sense of the way natural phenomena occurs through scientific laws. At a molecular level,
the interactions are best explained through quantum mechanics (see Section i.d); in particular
by the Schrödinger equation, or its approximation with Hartree–Fock, post-Hartree–Fock
or density functional theory methods [HJO00]. At this scale, it is possible to describe electrons,
which enables the method to give predictive results on par with physical experimentation. Albeit
extremely precise and self-contained — without the need of empirical quantities, it becomes
computationally prohibitive to use as the size of the system increases.

Another theory, less precise and less computationally intensive is through Newton’s law of
motion with molecular mechanics (see Section i.e). At this scale, electrons cannot be described
explicitly and are replaced by a notion of chemical bonds.

At a still larger scale, we can average physical properties in space, and look at the physical
laws through a continuum, with the use of continuum mechanics methods (see Section i.f).

Choosing among these scales, or possibly a combination of them, and different methods to
describe molecular interactions depends on the objectives or quantities of interest, and can even
be a matter of personal choice. It depends on a delicate balance between needed accuracy
and computational cost. We are interested with the present work in broadening that choice for
molecular dynamics simulations.

To understand the different issues we want to tackle, it is useful to have in mind a problem that
can make use of the method we developed; it is why we describe in details in the next section
the case of drug design. In particular, methods in Chapters ii to iv and vi are applicable to the
example we develop in the next section, although they are actually more general.

I.B Drug design as a practical application of molecular simulations

When considering new lubricant oils for mechanics, we may be interested to the viscosity indices
for a range of temperatures. When considering soaps and shampoos, we may look at tuning
wetting additives to increase the penetration speed of active ingredients [Lee+20]. When doing
drug design, we may want to compare the ligand efficiencies of molecules against a target, a
virus’ enzyme for instance, to find drugs able to inhibit processes in the virus that renders it
infectious.

What all the previous cases have in common is the need to extract and predict physical properties
from molecular systems, which we may want to do with computer simulations. As we have said
previously, in the current section, we will show tropism towards drug design and will be mostly
describing works needed for the latter example. We assume that biologists or chemists are able
to provide a list of compounds to be tested. That in itself is by no means easy and is the field
of chemical engineering. They have to use their knowledge of chemical processes to propose a
catalog of possible compounds that should react with the intended target.

Before the advances of computing power, they would have needed to synthesise these com-
pounds, and have laboratory experiments to extract the desired physical properties in vitro.
Only then could they be able to discard the ones that show the least potential. The cost in time
and material of this way can be overwhelming; forcing scientists to discard molecules that they
think might work, but seem less inclined to or ones that are the more complicated and costly to
synthesis.

3



Chapter i General introduction

This has begun to change: With easy access to astounding computing power, we can hope to
automatise the discovery of list of compounds worthy of synthesis for further testing with what
is sometimes called in silico methods. However, we are nowhere near being able to replace the
complete procedure for drug design: that would require being able to model in vivo reactions,
the ones inside a living organism such as the human. But this goal does not seem nowadays as
far fetched as it used to.

I.B.1 Molecular docking

At a supramolecular scale, chemical systems may bond with each other to form complex assembled
structures. For example, the human immunodeficiency virus 1 is able to infect cells of the human
immune system. On the most external shell of the human immunodeficiency virus 1, are proteins
that can attach to human cells, the first step in the process of infecting them [BRD13].

If the human immunodeficiency virus 1 has attached a human cell, we say that it has docked
it: there is a stable bond between a receptor on the surface of the human cell and a ligand on
the surface of the virus. A pharmacologist when doing drug design may want to use the same
process against the virus by finding adequate ligands against virus receptors (that may have had
the role of ligands when considering the docking to human cells) on the virus surface to prevent
the infection to process.

On a macroscopic level, all of this is a question of geometry: how well a ligand is able to fit a
receptor to activate. The same way a door can be unlocked with the correct key (an analogy first
made by Fischer [Fis94]). This means having the geometry of both the ligand and the receptor.
At this scale, the problem of drug design can be seen as how to increase the contact between two
molecules.

We note that this implies deep understanding of the infection process, as well as to be able to
know which are the active sites involved in this process and the geometry in which the compounds
will present themselves to each other.

Let us recapitulate some major steps of drug design for a target:

(i) Identify the processes and its active sites in which the target is involved;

(ii) Choose adequate ligands that may bind with receptors on the target;

(iii) Evaluate the ligands’ affinities to pick the ones that show the most promises.

I.B.2 Know your enemy

When considering in silico research, Item (i) may be the most difficult step of all. As can be
seen in the years that took the quest to understand how the human immunodeficiency virus 1
worked: By first isolating the virus, then showing that it was responsible of the acquired immune
deficiency syndrome and finally how it can infect human cells. Even if in this particular case,
the research took place in the 1980s, it is still a difficult enterprise nowadays, as is seen in the
current worldwide effort to understand the coronavirus disease 2019 for example.

This is a difficult [Sny+05; Yee+05] andmandatory step, because having the sequence of atoms
in a molecule is often not enough. The number of different geometries becomes a combinatorial
hell as the number of atoms increases. And ferreting through all the possible combinations with a
computer to extract the most probable combinations seems too remote for the moment; even for
relatively small compounds of a few thousands atoms, and much less so for viruses with millions
of them. We note however that some methods using machine learning seem promising, as can be
seen in the results of the AlphaFold method by Senior et al. [Sen+20], where the authors are
able to predict with remarkable accuracy the three-dimensional conformations of large proteins.

4



i.c Multiscale problems

So for this part, a lot of laboratory experiments and input from experienced biologists and
chemists is necessary. And no matter how much computing power is thrown at the problem, we
are still a long way to being able brute-force our way out of this issue. We need to have access
to as few geometries for the target, or at least to some of its active site, as possible as a starting
point.

Once the geometry of the target is available and active sites to which we want to bind have
been identified, we have to tackle Item (ii). As it was the case for the previous item, it is still
mostly done by hand. Scientists have to mobilise their knowledge of existing ligands and similar
situations to tune some aspects of the ligands to apply to the current situation. Computational
tools may help to augment the space of configurations to be tried [Boe11].

Items (i) and (ii) require deep knowledge of chemistry and is hardly accessible to outsiders.
Thankfully for the author, that it not the case for Item (iii):

If we think of chemical interactions as rigid bodies, getting back to the key-lock analogy by
Fischer [Fis94], this means we have to [Rog11]: (i) Search for the possible conformations
of the ligands with respect to the receptor (i.e., have different keys to test); (ii) Evaluate how
probable the ligand is to find itself close to the receptor (i.e., how probable is it for the key to
unlock the door) [Ain+15]. This is is the role of scoring functions, which are often classified in
three classical categories (empirical, knowledge-based and theoretical), with a fourth containing
machine-learning based approach.

In this work, we will be interested in theoretical — or physically-based — methods, which can
tackle those two steps at the same time when doing molecular dynamics.

I.C Multiscale problems

To improve accuracy of in silico methods, we can look at developing new methods (Chapter v).
Or we can look at issues related to modelling scale or computational scales (Chapters ii to iv
and vi).

I.C.1 Modelling scale

The first question we have to answer is at which scale to model matter. As we have previously
said, quantum mechanics is the only method able to accurately account for electrons. Hence
for high accuracy at active sites, we would like to use quantum mechanics methods. However,
even for methods that treat nuclei classically and which have some parameterisation to speedup
computations — such as density functional theory, we cannot hope to model systems having
more than a few thousands atoms [Bur12]. This is not enough for most systems of interest, not
to mention molecular systems such as viruses with millions of atoms.

At the other end of the scale, we know that solvent has an effect on molecular interactions,
and should be modelled to have accurate simulations [TP94; Amo+98]. But if we have to also
model enough solvent around the system of interest, we also face the problem of having to model
very large systems, so we may want to use a coarser description of the physics using continuum
mechanics. This is a difficult conundrum to solve; hence the idea to develop multiphysics methods,
where different physical laws can be used together to model complex systems.

In the case of drug design, it is possible to use quantum mechanics to model atoms near the
active sites, where the magic happens, then use molecular mechanics to model atoms at some
distance, where we do not need to account with high accuracy the effects of electrons. Molecular
mechanics can be used to model other atoms linked in some way to the quantum mechanics
system, or solvent molecules — such as water or acetone.

We developed methods in Chapters iii and iv with such multiphysics in mind.

5



Chapter i General introduction

I.C.2 Computational scale

Once we have chosen the physics we want to use, we can improve accuracy by increasing the
size of the molecular system, for example taking into account more solvent molecules. Or we
may want to simulate the evolution of the system for a longer period of time. This can be done
by taking advantage of the possibility to use cluster of computers, for which we need to have
methods that scale with the added computational power. That may force to change parts of a
method, or to develop a new method altogether. This is what we look at in Chapters ii to iv. In
Chapter vi, we look at how to speedup computations to allow for longer simulations.

I.D Quantummechanics and HARTREE–FOCK theory

To be able to perform molecular dynamics simulations, we need access to an energy functional ℰ
that depends on the configuration of the molecular system, is regular with respect to the positions
of the atoms and which may require to solve a complex problem. Hence, in the remaining of this
part, we introduce general notions — in particular the energy functionals we use, which will be
useful for the reader in the forthcoming chapters. Namely, we introduce quantum mechanics
in this section, molecular mechanics and force fields in Section i.e and continuum mechanics
in Section i.f. In this section, we will abundantly use results from Helgaker, Jørgensen, and
Olsen [HJO00] and Cancès, Bris, and Maday [CBM06], and we do not consider particles’ spins.

The quantum mechanics energy comes from the deceptively innocent looking Schrödinger’s
equation that is in the time-independent version

ℋ𝜓 = ℰ𝜓, (iv.1)

where the operator ℋ is the Hamiltonian of the system, 𝜓 is an eigenfunction called the wave
function and ℰ is a real, the energy associated to 𝜓. We will give the explicit expression for this
Hamiltonian, but we start first with some generalities about the Schrödinger equation.

I.D.1 Time-independent SCHRÖDINGER equation

We consider a molecular system composed of𝑀 nuclei of charge 𝑍𝑖 at positions 𝑅𝑖, for 𝑖 ∈ ⟦1 . . 𝑀⟧
and 𝑁 electrons of charge −1 in atomic units. Under the Born–Oppenheimer approxima-
tion [MH09], the nuclei are treated as classical particles that obey Newton’s law of motion.
The electrons are described by a wave function 𝜓 ∈ L2(R3𝑁,C). This approximation can be done
because the nuclei have a much bigger mass — by three orders of magnitude, than the electrons
and are thus more localised in space.

Moreover, an axiom of quantum mechanics states that electrons must be indiscernible from
each other and are fermionic particles. This means that for any permutation 𝜎 ∈ 𝔖𝑁 of ⟦1 . . 𝑁⟧,

𝜓(𝑥1,… , 𝑥𝑁) = 𝜀(𝜎)𝜓(𝑥𝜎(1),… , 𝑥𝜎(𝑁)), (iv.2)

where 𝜀(𝜎) is the signature of 𝜎. This means that 𝜓 is an antisymmetric function, and that in
particular 𝜓(𝑥1,… , 𝑥,… , 𝑥,… , 𝑥𝑁) = 0, with which we recover Pauli’s exclusion principle that
two electrons cannot be at the same position. We denote the space of antisymmetric functions to
which 𝜓 belongs

L2𝑎(R3𝑁,C) ≔ 𝑁⋀
1
L2(R3,C), (iv.3)

where ⋀ is the antisymmetric tensor product.
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i.d Quantum mechanics and Hartree–Fock theory

It is of particular interest to find what is called a ground state of the system. That is to find a
minimiser of the problem

inf{⟨𝜓,ℋ𝜓⟩ || 𝜓 ∈ L2𝑎(R3𝑁,C), |𝜓| = 1}, (iv.4)

where the Hamiltonian is

ℋ = − 𝑁∑
𝑖=1

12∆𝑥𝑖 +
𝑁∑
𝑖=1

𝑉(𝑥𝑖) + ∑
1≤𝑖<𝑗≤𝑁

1|𝑥𝑖 − 𝑥𝑗| , (iv.5)

with
𝑉(𝑥) ≔ − 𝑀∑

𝑘=1
𝑍𝑘|𝑥 − 𝑅𝑘| (iv.6)

the potential created by the nuclei to the electrons.

I.D.2 HARTREE–FOCKmethod

To simplify the overwhelming cost of the Schrödinger’s equation, several methods have been
proposed. One of particular interest, and on which we will rely a lot, is the Hartree–Fock
method. We note that we will only consider the restricted setting, where all orbitals are doubly
occupied by electrons.

In the Hartree–Fock method, we consider wave functions that can be written as a sin-
gle Slater determinant of monoelectronic orthonormal functions, called orbitals. For 𝑁 or-
bitals 𝜙𝑖 ∈ L2(R3,C), we look for a normalised 𝜓 that solves Eq. (iv.4) under the form

𝜓 = 1√𝑁! det
(𝜙𝑖(𝑥𝑗))𝑖,𝑗 . (iv.7)

Physically, with the Hartree–Fock method we make the assumption that electrons act indepen-
dently from each other, so that there is no correct correlation between them.

The first term represents the kinetics energy, the second the attractive interaction energy
between the nuclei and the electrons, the third the repulsive Coulombic energy between electrons.

We should also remark that we have omitted the kinetics energy of nuclei and the repulsive
Coulombic energy between them. As the nuclei are treated classically, the computation of those
terms does not pose any difficulty. However they should be included to have the correct total
energy.

We now define the space

𝒲𝑁 ≔ {Φ ≔ (𝜙1,… , 𝜙𝑁) ∈ L2(R3,C)𝑁 || ⟨𝜙𝑖, 𝜙𝑗⟩ = δ𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁}, (iv.8)

which can be rewritten if we introduce the Gram matrix

GramΦ ≔ (⟨𝜙𝑖, 𝜙𝑗⟩)𝑖𝑗 (iv.9)

as 𝒲𝑁 = {Φ ∈ L2(R3,C)𝑁 || GramΦ = Id𝑁}. (iv.10)
If we define the space of Slater determinants as

𝒮𝑁 =
{
𝜓 ∈ L2𝑎(R3𝑁,C)

||||| 𝜓 = 1√𝑁! det
(𝜙𝑖(𝑥𝑗))𝑖,𝑗

}

=
{
𝜓 ∈ L2𝑎(R3𝑁,C)

||||| ∃Φ ∈ 𝒲𝑁, 𝜓 = 1√𝑁! det
(𝜙𝑖(𝑥𝑗))𝑖,𝑗

}
,

(iv.11)
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Chapter i General introduction

then the Hartree–Fock method corresponds to looking for solution of Eq. (iv.4) in this space

inf{⟨𝜓,ℋ𝜓⟩ || 𝜓 ∈ 𝒮𝑁}. (iv.12)

Moreover, when 𝜓 is a Slater determinant, there holds
⟨𝜓,ℋ𝜓⟩ = ℰHF(Φ), (iv.13)

where

ℰHF(Φ) = 𝑁∑
𝑖=1

12 ∫
R3
|∇𝜙𝑖|2 +∫

R3

⎛⎜⎜⎜⎜⎜⎜⎝
𝑁∑
𝑖=1

|𝜙𝑖|2
⎞⎟⎟⎟⎟⎟⎠ 𝑉 + 12 ∫

R3
∫
R3

(∑𝑁𝑖=1|𝜙𝑖(𝑥)|2) (∑𝑁𝑖=1|𝜙𝑖(𝑥′)|2)
|𝑥 − 𝑥′| d𝑥d𝑥′

− 12 ∫
R3

∫
R3

||∑𝑁𝑖=1 𝜙𝑖(𝑥)𝜙𝑖(𝑥′)||2|𝑥 − 𝑥′| d𝑥d𝑥′. (iv.14)

If we define respectively the density matrix and the electronic density as

𝛾Φ(𝑥, 𝑥′) ≔
𝑁∑
𝑖=1

𝜙𝑖(𝑥)𝜙𝑖(𝑥′), and 𝜌Φ(𝑥) ≔ 𝛾Φ(𝑥, 𝑥) =
𝑁∑
𝑖=1

|𝜙𝑖(𝑥)|2, (iv.15)

then we can rewrite ℰHF(Φ) as

ℰHF(Φ) = 𝑁∑
𝑖=1

12 ∫
R3
|∇𝜙𝑖|2 +∫

R3
𝜌Φ𝑉 + 12 ∫

R3
∫
R3

𝜌Φ(𝑥)𝜌Φ(𝑥′)|𝑥 − 𝑥′| d𝑥d𝑥′

− 12 ∫
R3

∫
R3

|𝛾Φ(𝑥, 𝑥′)|2|𝑥 − 𝑥′| d𝑥d𝑥′. (iv.16)

The first term represents the kinetics energy, the second the attractive interaction energy
between the nuclei and the electrons, the third the repulsive Coulombic energy between electrons
and the fourth term is called the exchange term, and is a correction due to the antisymmetry of
the wave function.

We have also that 𝛾Φ ∈ L2(R3 × R3,C) is the kernel of a density operator 𝒟Φ, that is

∀𝜓 ∈ L2(R3), (𝒟Φ𝜓)(𝑥) = ∫
R3

𝛾Φ(𝑥, 𝑥′)𝜓(𝑥′)d𝑥′ =
𝑁∑
𝑖=1

⟨𝜙𝑖, 𝜓𝑖⟩𝜙𝑖. (iv.17)

Thus, the density operator is the orthogonal projector on Span(𝜙1,… , 𝜙𝑁) in L2(R3,C). It is often
written 𝒟Φ = 𝑁∑

𝑖=1
|𝜙𝑖⟩⟨𝜙𝑖|. (iv.18)

Moreover, the Hartree–Fock energy has the property to be invariant by rotations. Indeed, for
any 𝑈 ∈ U𝑁,

ℰHF(𝑈Φ) = ℰHF(Φ), 𝛾𝑈Φ(𝑥, 𝑦) = 𝛾Φ(𝑥, 𝑦), and Gram𝑈Φ = Id𝑁 . (iv.19)

This is consistent with the indiscernibility properties of electrons. Hence, what matters is not the
orbitals 𝜙𝑖 as much as the linear spaces generated from them.
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i.d Quantum mechanics and Hartree–Fock theory

By completing the 𝑁 orthogonal functions 𝜙𝑖 to be a basis of L2(R3,C), we can also write the
kinetics part of the energy from the density matrix with

𝑁∑
𝑖=1

12 ∫
R3
|∇𝜙𝑖|2 = 12 Tr(∆𝛾Φ), (iv.20)

then the energy can be seen as a function of the density operator

ℰHF(Φ) = ℰHF(𝒟Φ). (iv.21)

Finally, the problem can be written as

inf{ℰHF(𝒟) ||𝒟 ∈ 𝒫𝑁}, (iv.22)

where 𝒫𝑁 is the set of orthogonal projectors of rank 𝑁 in L2(R3,C)
𝒫𝑁 ≔ {𝒟 ∈ ℒ1 || Span(𝒟) ⊂ L2(R3,C), 𝒟2 = 𝒟, 𝒟† = 𝒟, Tr(𝒟) = 𝑁}, (iv.23)

with ℒ1 the set of trace operators onto L2(R3,C) [RS81], and where

ℰHF(𝒟) ≔ Tr(ℎ𝒟) + 12 Tr(𝒢(𝒟) ⋅𝒟)𝒟 ∈ 𝒫𝑁, (iv.24)

ℎ ≔ −12∆ + 𝑉, and (𝒢(𝒟) ⋅ 𝜙)(𝑥) ≔ (𝜌𝒟 ∗ 1|⋅|
) (𝑥)𝜙(𝑥) −∫

R3
𝛾𝒟(𝑥, 𝑥′)|𝑥 − 𝑥′| 𝜙(𝑥′)d𝑥′, (iv.25)

where 𝛾𝒟 is the kernel of 𝒟 and 𝜌𝒟(𝑥) = 𝛾𝒟(𝑥, 𝑥).
We can define the Fock operator as

ℱ(𝒟) ≔ ℎ + 𝒢(𝒟). (iv.26)

The first term is the one-electron operator and the second the (non-linear) two-electron operator.

I.D.3 Discretisation with Gaussian-type functions

To solve computationally the Hartree–Fock problem, we can use a Galerkin approximation,
where the problem is solved in a finite-dimensional subspace 𝒱 of 𝒲𝑁. If the subspace 𝒱 is
spanned by elements of a complete basis of 𝒲𝑁, then we have a systematic way to construct an
increasing family as 𝑘 → +∞ of subspaces 𝒱𝑘 such that the error done by discretising the problem
goes to zero as 𝑘 → +∞. This enables the possibility to solve the problem for any accuracy.

A lot of work has been done by chemists to optimise the basis to have as few functions as
possible to diminish the computational cost, while providing accurate enough results. In doing
so, most chemistry codes do not use systematic and mathematically complete basis.

A common technique is the linear combination of atomic orbitals, where the orbitals are
expanded into a set of simple one-electron functions

𝜙𝑖(𝑟) = ∑
𝜇

𝐶𝜇𝜒𝜇(𝑟 − 𝑅𝑖), (iv.27)

which is a linear combination of atomic orbitals that are centred around nuclei positions of the
system 𝑅𝑖. The atomic orbitals can be chosen as Gaussian-type functions under the form

𝜒𝜇(𝑟) ≔ |𝑟|2(𝑛−ℓ−1) exp(−𝛼𝑟2)𝑌ℓ𝑚(𝑟), (iv.28)
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Chapter i General introduction

where 𝑌ℓ𝑚 are the spherical harmonics, 𝑛 is a strictly positive integer called the principal quantum
number, ℓ < 𝑛 is the angular–momentum quantum number, and 𝑚 is such that |ℓ| ≥ 𝑚.

This particular family of functions is complete for fixed 𝛼, but non-orthogonal. However, the
families are often chosen with different 𝛼, to speedup the computations, doing this we may lose
the completeness property of the basis.

A common choice of basis are the complex spherical-harmonics Gaussian-type orbitals given by

𝜒GTO𝛼ℓ𝑚 (𝜚, 𝜃, 𝜑) ≔ 𝑅GTOℓ (𝛼, 𝜚)𝑌ℓ𝑚(𝜃, 𝜑), (iv.29)

where

𝑅GTOℓ (𝛼, 𝜚) ≔ 2(2𝛼)3/4𝜋1/4
√ 2ℓ(2ℓ + 1)!!

(√2𝛼𝜚)ℓ exp(−𝛼𝑟2), (iv.30)

𝑟 = (𝜚, 𝜃, 𝜑) in spherical coordinates and 𝛼 > 0 is the orbital exponent. The choice of the Gaussian
functions is essentially due to the separation of variables that simplifies greatly the computation
of integrals.

To further speedup the computations, contracted Gaussian-type orbitals are often used. They
are a fixed linear combinations of Gaussian-type orbitals

𝑅CGTO𝑎ℓ (𝑟) ≔ ∑
𝑖

𝑑𝑖𝑎𝑅GTOℓ (𝛼𝑖, 𝑟), (iv.31)

where the 𝑑𝑖𝑎 are the contraction coefficients. The coefficients are optimised to decrease the
number of basis functions that have to be used to obtain accurate results.

In this work, we will always assume to use Gaussian-type orbitals.

I.D.4 Discrete HARTREE–FOCK problem

We now look at the discrete Hartree–Fock problem. We assume that a suitable basis {𝜒𝜇}𝑁𝑏𝜇=1
has been chosen that generates some space 𝒱. We thus look at the problem with functions on the
restricted space 𝒲𝑁(𝒱), where

𝒲𝑁(𝒱) ≔ {Φ ∈ L2(R3,C)𝑁 || 𝜙𝑖 ∈ 𝒱, GramΦ = Id𝑁}. (iv.32)

If we introduce the overlap matrix

𝑆 ≔
(∫

R3
𝜒𝜇𝜒𝜈

)
𝜇𝜈
, (iv.33)

the condition that GramΦ = Id𝑁 can be rewritten as 𝐶T𝑆𝐶 = Id𝑁, where 𝐶 is the matrix of
coefficients of the 𝜙𝑖 in the basis 𝜒𝜇

𝜙𝑖(𝑥) =
𝑁𝑏∑
𝜇=1

𝐶𝜇𝑖𝜒𝜇(𝑥). (iv.34)

If we denote by ℎ the matrix ℎ ≔ (⟨𝜒𝜇, ℎ𝜒𝜈⟩)𝜇𝜈 , (iv.35)

then we have the equality
𝑁∑
𝑖=1

12 ∫
R3
|∇𝜙𝑖|2 +∫

R3
𝜌Φ𝑉 = Tr(ℎ𝐶𝐶T). (iv.36)
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i.d Quantum mechanics and Hartree–Fock theory

Moreover, defining

(𝜇𝜈|𝜅𝜆) ≔ ∫
R3

∫
R3

𝜒𝜇(𝑥)𝜒𝜈(𝑥)𝜒𝜅(𝑥′)𝜒𝜆(𝑥′)|𝑥 − 𝑥′| d3𝑥d3𝑥′, (iv.37)

we have 𝐺 ≔ 𝐽 − 𝐾 where 𝐽 and 𝐾 are defined for any matrix 𝐷 ∈ R𝑁𝑏×𝑁𝑏 with

𝐽(𝐷) ≔
⎛⎜⎜⎜⎜⎜⎜⎝

𝑁𝑏∑
𝜅,𝜆=1

(𝜇𝜈|𝜅𝜆)𝐷𝜅𝜆
⎞⎟⎟⎟⎟⎟⎠
𝜇𝜈

and 𝐾(𝐷) ≔
⎛⎜⎜⎜⎜⎜⎜⎝

𝑁𝑏∑
𝜅,𝜆=1

(𝜇𝜆|𝜅𝜈)𝐷𝜅𝜆
⎞⎟⎟⎟⎟⎟⎠
𝜇𝜈
, (iv.38)

then we have the identities

∫
R3

∫
R3

𝜌Φ(𝑥)𝜌Φ(𝑥′)|𝑥 − 𝑥′| d𝑥d𝑥′ = Tr (𝐽(𝐶𝐶T)𝐶𝐶T) , (iv.39)

and ∫
R3

∫
R3

|𝛾Φ(𝑥, 𝑥′)|2|𝑥 − 𝑥′| d𝑥d𝑥′ = Tr (𝐾(𝐶𝐶T)𝐶𝐶T) . (iv.40)

With all this, we can rewrite the discrete Hartree–Fock problem as

min{ℰHF(𝐶𝐶T) || 𝐶 ∈ 𝒲𝑁(R𝑁𝑏×𝑁)}, (iv.41)

where ℰHF(𝐷) ≔ Tr
(ℎ𝐷 + 12𝐺(𝐷)𝐷) , (iv.42)

and 𝒲𝑁(R𝑁𝑏×𝑁) ≔ {𝐶 ∈ R𝑁𝑏×𝑁 || 𝐶T𝑆𝐶 = Id𝑁}. (iv.43)
We also have the equality of the sets

𝒲𝑁(R𝑁𝑏×𝑁) ≔ {𝐶𝐶T || 𝐶 ∈ R𝑁𝑏×𝑁, 𝐶T𝑆𝐶 = Id𝑁}
= {𝐷 ∈ R𝑁𝑏×𝑁𝑏 || 𝐷T = 𝐷, 𝐷𝑆𝐷 = 𝐷, Tr(𝑆𝐷) = 𝑁} ≕ �̃�𝑁. (iv.44)

So, with a change of variables 𝐷 → 𝑆1/2𝐷, we can also work on the space

𝒫𝑁 ≔ {𝐷 ∈ R𝑁𝑏×𝑁𝑏 || 𝐷T = 𝐷, 𝐷2 = 𝐷, Tr(𝐷) = 𝑁}, (iv.45)

which includes orthogonal projectors onto the space spanned by the 𝑁 orbitals, which is bijective
to some smooth manifold, the Grassmann manifold 𝒢𝑟(𝑁,𝑁𝑏). This will be of importance in
Chapter vi and we refer the reader to this chapter for more details.

I.D.5 Solving the problemwith the self-consistent field algorithm

We are now interested in solving the discrete Hartree–Fock problem

min
{ℰHF(𝐷) || 𝐷 ∈ �̃�𝑁

}. (iv.46)

This problem is often solved using a fixed-point type algorithm referred globally as the self-
consistent field method. It contains for instance the Roothaan algorithm [Roo51] for closed
shell systems with an linear combination of atomic orbitals basis set, its damped version by
Zerner and Hehenberger [ZH79] as well as the level-shifting algorithm from Saunders and
Hillier [SH73]. A mathematical study of these algorithms was done by Cancès and Bris [CB00].
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We introduce the symmetric matrix Λ of Lagrange multipliers, and the Lagrangian function

ℒ(Λ, 𝐶) ≔ ℰHF(𝐶𝐶T) − ⟨Λ, 𝐶T𝑆𝐶 − Id𝑁⟩ (iv.47a)
= ℰHF(𝐶𝐶T) − Tr (ΛT(𝐶T𝑆𝐶 − Id𝑁)) . (iv.47b)

Then, using the properties that Tr(𝐺(𝐷)𝐷′) = Tr(𝐺(𝐷′)𝐷) for any 𝐷 and 𝐷′ in R𝑁𝑏×𝑁𝑏 and
that Λ is symmetric, ∇𝐶ℒ(Λ, 𝐶) = 2𝐹(𝐷)𝐶 − 2𝑆𝐶Λ, (iv.48)
where 𝐹(𝐷) ≔ ℎ + 𝐺(𝐷). (iv.49)

Hence, to solve the discrete Hartree–Fock problem, we may look at solving the system

{∇𝐶ℒ(Λ, 𝐶) = 0
∇Λℒ(Λ, 𝐶) = 0 ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐹(𝐷)𝐶 = 𝑆𝐶Λ
𝐶T𝑆𝐶 = Id𝑁𝐷 = 𝐶𝐶T

. (iv.50)

Moreover, if 𝐶 is a critical point, then for any orthogonal matrix 𝑈, 𝐶𝑈 is also a critical point.
We can thus diagonalise Λ and solve

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐹(𝐷)𝐶 = 𝑆𝐶𝐸
𝐶T𝑆𝐶 = Id𝑁𝐷 = 𝐶𝐶T

, (iv.51)

where 𝐸 ≔ Diag(𝜀1,… , 𝜀𝑁).
This system can be solved using a fixed-point algorithm. We first chose an initial guess matrix𝐶0.

Then we solve the system iteratively to find a sequence of points 𝐶𝑛 such that |𝐶𝑛−1−𝐶𝑛| converges
to zero and verifies the system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐹(𝐷𝑛−1)𝐶𝑛 = 𝑆𝐶𝑛𝐸𝑛𝐶T𝑛𝑆𝐶𝑛 = Id𝑁𝐷𝑛 = 𝐶𝑛𝐶T𝑛
, (iv.52)

where 𝐸𝑛 is diagonal. This is the gist of the self-consistent field method. Modifications to improve
the convergence are often related on how the 𝐶𝑛 matrices are updated at each iteration.

I.D.6 Density functional theory

Hartree–Fock is the building block of even more accurate methods, that are often referred as
post-Hartree–Fock methods. However, those methods have a computational complexity of at
least the one for Hartree–Fock in 𝒪(𝑁4). This is an issue for molecular dynamics simulations,
as it greatly limits the size of the systems that can be considered, as well as the simulations
lengths. An alternative is to use density functional theory, which has a computational complexity
in 𝒪(𝑁3) or 𝒪(𝑁4), depending on the approximation, but with greater accuracy. It works by
introducing some heuristic quantity in the form of an energy functional.

At our level, we can consider this to be a black box algorithm that replaces Hartree–Fock.
However, as this is the method that was used for computations in Chapters iii and v, and partially
in Chapter vi, we will give a brief description.

The first theoretical justification for density functional theory was proposed by Hohenberg and
Kohn [HK64], and later generalised by Lieb [Lie83]. It is often referred as the Hohenberg–Kohn
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i.e Molecular mechanics and force fields

theorem, and posits the existence of a density functional 𝐹 with which the Schrödinger’s
equation can be rewritten as finding a density 𝜌 that minimises

inf𝜌
{
𝐹(𝜌) +∫𝜌𝑉 ||||| 𝜌 ≥ 0, 𝜌1/2 ∈ H1(R3), ∫𝜌 = 𝑁

}
. (iv.53)

This is an existence theorem, and the expression of the functional is not know in general.
However, chemists have proposed different expressions that work remarkably well in practice.
In this work, the functional used will often be supposed to be the one introduced by Kohn and
Sham [KS65].

In Chapter v, we look at how to obtain physical properties by looking at families of equations,
where the Coulomb operator was damped by some function. In Chapter vi, we are interested
in fastening molecular dynamics when using Hartree–Fock or density functional theory by
reducing the number of Fock matrices evaluations.

I.E Molecular mechanics and force fields

As with the Born–Oppenheimer’s approximation in quantum mechanics, atoms are represented
in classical mechanics by point charges. However, we lose laws to describe electrons of the system.
Hence, nuclei interact with each other through an empirical potential energy ℰ, which require
parameters that are tuned with respect to experiments or quantum mechanics computations.
The choice of representation is often called a force field in the molecular mechanics community.

Force fields make abundant use of notions of covalent bonds between atoms to be able to
describe strong electronic interactions. Moreover, in most force fields, covalent bonds between
atoms cannot be broken and are less flexible than the molecular system as a whole. Hence,
potential energies can be split in bounded and unbounded parts, which include respectively
covalent (or intramolecular) and non-covalent (or intermolecular) contributionsℰ ≔ ℰintra + ℰinter. (v.1)

In this work, we will be mostly interested in long-range interactions represented through the
intermolecular contribution to the energy ℰinter. The notion of density in quantum mechanics is
represented at first-order by point charges that are often placed at the positions of the nuclei. To
take into account the anisotropic properties of molecular systems, point multipoles can also be
used instead of only point charges. Those force fields are known as classical force field.

However, in most classical force fields those point charges or multipoles are permanent and
do not change with respect to the geometry of the molecular system as a all. This can make it
difficult to account for some properties such as hydrogen bonds. To solve this shortcoming, we
can add a notion called polarisation at second order, whose goal is to mimic more accurately the
behaviour of quantum mechanics density. The force fields making use of this description are
commonly referred as second generation or polarisable force fields.

Our work with molecular mechanics is mostly centred around the amoeba polarisable force
field and its implementation in the software TINKER [Pon+10].

I.E.1 Classical force fields

In classical force fields implementations, pioneered with software such as AMBER [WK81] and
CHARMM [Bro+83], the atoms (or sometimes a functional group) are represented by point multi-
poles. The multipoles are invariant during a simulation, and can be seen as an approximation
of molecular orbitals in quantum mechanics. For example, point charges would mimic the 𝑠
molecular orbitals.

13



Chapter i General introduction

In the following, we will consider all-atomic force fields where the smallest and only fragments
are the atoms. We also introduce the notion of topological distance. A molecule is represented
as a graph, where atoms are linked between each other through covalent bonds, or edges. The
topological distance between two atoms in a same molecule is thus the shortest number of edges
between the two.

Covalent terms

We often find three main types of interactions for the covalent potential energy:
• Two-body stretching terms, represented by an harmonic oscillator between two atoms

separated by a covalent bond. It is used to discriminate against a distance far from some
value at an equilibrium. They are under the formℰstretch ≔ ∑

𝑒𝑖𝑗
𝑘𝑠𝑒𝑖𝑗(ℓ(𝑒𝑖𝑗) − ℓ0)2, (v.2)

where 𝑘𝑠𝑒𝑖𝑗 ∈ R are the oscillator parameters and ℓ(𝑒𝑖𝑗) is the length of the bond 𝑒𝑖𝑗.
• Three-body bending terms, represented by an harmonic oscillator between two atoms at a

topological distance of two. It increases the cost for the two ends to be planar. They are
under the form ℰbending ≔ ∑

𝑒𝑖𝑗𝑘
𝑘𝑏𝑒𝑖𝑗𝑘(𝜃(𝑒𝑖𝑗𝑘) − 𝜃0)2, (v.3)

where 𝑘𝑏𝑒𝑖𝑗𝑘 ∈ R are the oscillator parameters and 𝜃(𝑒𝑖𝑗𝑘) is the angle of the bond 𝑒𝑖𝑗𝑘.
• Four-body dihedral terms between four consecutive atoms. It increases the cost for the

bond to rotate around the middle of the bond between the two atoms at the centre. They
are under the form

ℰdihedral ≔ ∑
𝑒𝑖𝑗𝑘𝑙

𝑁∑
𝑛=1

𝑘𝑑𝑒𝑖𝑗𝑘𝑙,𝑛 (1 + 𝑛 cos(𝜙(𝑒𝑖𝑗𝑘𝑙) − 𝜙0)) , (v.4)

where 𝑘𝑑𝑒𝑖𝑗𝑘𝑙 ∈ R are the dihedral parameters and 𝜙(𝑒𝑖𝑗𝑘𝑙) is the angle of the chain 𝑒𝑖𝑗𝑘𝑙.
The intramolecular energy is the sum of all those contributionsℰintra ≔ ℰstretch + ℰbending + ℰdihedral, (v.5)

and its computation is local and of no difficulty, as its computational complexity grows linearly
with the number of particles.

Moreover, the more terms we add, the better we can hope to accurately represent the physics.
So some force fields may add three-body Urey–Bradley terms or four-body improper dihedral
terms, etc. However the more terms we add, the more work as to be done to parameterise them,
and the more we risk to overfit the model. In the amoeba force field for example, there are five
intramolecular terms.

Non-covalent terms

The non-covalent contributions often include two-body Van derWaals and electrostatic potentials
and are between all atoms of the simulationℰinter ≔ ℰVdW + ℰelec. (v.6)
Both of them decrease in intensity as a power of the inverse of the distance between each pairs
of atoms in the system.
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i.e Molecular mechanics and force fields

VAN DER WAALS potential The Van der Waals potential includes a repulsive term, which
describes the Pauli repulsion: two atoms cannot get too close to each other. It may also include
a less physical attractive term that helps in the accuracy of the force field. Its quick decrease
makes it negligible when atoms are at some distance, and thus can be considered only locally.
This means that the computational complexity to compute Van der Waals potentials may grow
linearly with the number of atoms.

They are often referred to in the form 𝑛–𝑚, where 𝑛 is the inverse power of the repulsive
term and 𝑚 the inverse power of the attractive term. A well-known Van der Waals potential is
the 12–6 Lennard–Jones potential. In the case of amoeba a distance-buffered 14–7 potential is
used [Hal92]. It is of the form

ℰVdW ≔ ∑
𝑖,𝑗

𝑘𝑣𝑖,𝑗
( 1𝑟14𝑗𝑖 − 1𝑟7𝑗𝑖

)
, (v.7)

where 𝑘𝑣𝑖,𝑗 are real parameters for the Van der Waals potential.

COULOMB potential The second term, the electrostatic potential, is attractive and follows
Coulomb’s law. It decreases slowly as the inverse of the distance between atoms. Hence,
to have accurate simulations, it may be important to compute it for all pairs of atoms. It is of the
form ℰelec ≔ ∑

𝑖,𝑗
𝑘𝑐𝑖,𝑗 1𝑟𝑗𝑖 , (v.8)

where 𝑘𝑐𝑖,𝑗 are real parameters for the Coulomb potential.
In the case where all two-body order interactions are considered, the computation of the

electrostatic potential grows quadratically with the number of particles. Hence, there is a need
to find accurate and less expensive ways to do the computations. In Chapters ii and iv, we
look at how to speedup the computation of this term, which is a bottleneck in force fields.
Chapter ii describe the method of choice for number of molecular mechanics software using
periodic boundary conditions, while Chapter iv describes a method often applied in the physics
community for non-periodic boundary conditions case, but rarely for chemical applications.

I.E.2 AMOEBA polarisable force field

With polarisable force fields, the description of the atoms is further enriched by considering
polarisation. It is a way to take into account the fact that at a quantum mechanics level, the
density changes with the geometry.

In biological applications, this term is of major importance. Several methods have been
proposed:

• the fluctuating charge model [RG91], where the values of the point charges are modified
during the simulation;

• the Drude oscillator model [LR03], where a point charge is introduced near atoms with an
harmonic oscillator;

• the induced dipole model [ACF72], where point dipoles are added to the invariant multipoles
at atomic sites.

The amoeba force field uses an induced dipole model for polarisation

ℰamoeba
inter ≔ ℰVdW + ℰelec + ℰipol, (v.9)
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Chapter i General introduction

where ℰipol is the energy associated to the induced dipoles. The polarisation term is evaluated
using an iterative procedure. However, for most of what we present, it can be understood as a
simple additional contribution to the permanent point dipole. As we did not work on polarisation
but with it, we will only give a description in the following, as it plays a central part in the amoeba
force field on which we often rely in this work.

Generalities about AMOEBA

The amoeba [PC03; Pon+10] force field differs from most classical force fields in two main ways.
It uses (static) point multipoles up to quadrupoles in order to approximate the electrostatic
properties of a molecule, and it is polarisable in the sense that each atomic site is additionally
(with respect to the static multipoles) equipped with an induced dipole that is determined by
minimising a polarisation energy for each new atomic configuration. Therefore, these induced
dipoles are degrees of freedom which are determined on the fly by the resolution of a linear
system (the polarisation equation) at each time-step and are not empirically fitted like the static
multipoles.

Of course, it shall be reminded that the force field still contains the covalent-terms and the
Van der Waals-terms, but the emphasis is shed on the (computationally) costly part due to the
long-range electrostatic interaction. Indeed, the quick decrease of the Van der Waals-terms
means that we can use a simple cutoff method to take them into account, which is not the case
for the electrostatic interaction.

Most force fields make use of damping or screening to modify the interactions between close-by
atoms. However the distinction between the two may not be always clear-cut. In this text, we
will distinguish between screening and damping in the following way: Screening will apply to
terms that are corrected due to a topological distance — that is a distance that depends only
on the bonds between atoms, whereas damping will apply to terms that are corrected due to
the physical distance between atoms. Screening and damping will be grouped together into the
scaling term.

The amoeba energy functional is a sum of all those term

ℰamoeba ≔ ℰintra + ℰVdW + ℰelec + ℰipol. (v.10)

Description of a force field based on static point quadrupoles

We first introduce the static (or permanent) part of the electrostatic contribution to the force field.
The polarisability is discussed in the upcoming section.

Let 𝑟{𝑁}̲ be a system composed of𝑁 atoms at positions {𝑟𝑖}1≤𝑖≤𝑁 in R3. Each point 𝑟𝑖 is associated
to a static point multipole operator

L̂𝑖 ≔ M0𝑖 +M1𝑖 ⋅ D𝑖 +M2𝑖 ⋅ D2𝑖 , (v.11)

where ⋅ is the point-wise product, M𝑑𝑖 is a tensor of dimension 3𝑑 describing the point 2𝑑-pole
and D𝑑𝑖 is the matrix of 𝑑-order partial derivatives with respect to atom coordinates 𝑖. Note that
for 𝑘 = 1, the operator D𝑟 (respectively D𝑖) is equivalent to the usual ∇ notation, and acts on the
variable 𝑟 (respectively 𝑟𝑖).

Hence, for any 𝑟 ∈ R3, the density associated to the point multipole L̂𝑖 is
𝜌𝑖(𝑟) ≔ L̂𝑖𝛿(𝑟 − 𝑟𝑖) ∈ R, (v.12)

where 𝛿 is the Dirac function. This represents a generalisation of a more classical density only
composed on point charges M0𝑖 ∈ R at positions 𝑟𝑖 which are given by M0𝑖𝛿(𝑟 − 𝑟𝑖).
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In particular, for any 𝑟 ∈ R3, the electric potential, electric field, gradient of the field and
Hessian of the field created by the point multipole 𝑖 are then respectively

𝜙𝑖(𝑟) ≔ L̂𝑖
( 1|𝑟 − 𝑟𝑖|

) , (v.13a)

E𝑖(𝑟) ≔ −D𝑟𝜙𝑖(𝑟) = −D𝑟
(
L̂𝑖 1|𝑟 − 𝑟𝑖|

) , (v.13b)

[D𝑟E𝑖(𝑟)]𝛾𝛾′ ≔ −𝜕𝛾 𝜕𝛾′L̂𝑖
( 1|𝑟 − 𝑟𝑖|

) , (v.13c)

[D2𝑟E𝑖(𝑟)]𝛼𝛽𝛾 ≔ −𝜕𝛼 𝜕𝛽 𝜕𝛾L̂𝑖
( 1|𝑟 − 𝑟𝑖|

) . (v.13d)

Moreover, the electrostatic (interaction) energy of the system is

ℰ(𝑟{𝑁}̲ ) ≔ 12
∑

1≤𝑖,𝑗≤𝑁𝑗≠𝑖
L̂𝑗𝜙𝑖(𝑟𝑗) = 12

∑
1≤𝑖,𝑗≤𝑁𝑗≠𝑖

L̂𝑖L̂𝑗
( 1|𝑟𝑖 − 𝑟𝑗|

)
. (v.14)

Indeed, the potential at 𝑟𝑗 created by all other multipoles 𝑖 ≠ 𝑗 is given by

𝜙int,𝑗(𝑟𝑗) ≔ ∑
1≤𝑖≤𝑁𝑗≠𝑖

𝜙𝑖(𝑟𝑗). (v.15)

As is it the case for most force fields, scaling factors are used for some specific interactions, in
particular the interaction between closed atomic sites. In the amoeba force field, those are used
to screen 1–𝑛 atoms interactions, where 𝑛 ∈ ⟦1 . . 5⟧ (i.e., interaction between atomic sites that
can be reached by less than six bonds). Hence, the energy of the system is in fact

ℰamoebastat (𝑟{𝑁}̲ ) ≔ 12
∑

1≤𝑖≠𝑗≤𝑁
𝑠𝑖𝑗L̂𝑖L̂𝑗

( 1|𝑟𝑖 − 𝑟𝑗|
)
, (v.16)

for some scaling factors 𝑠𝑖𝑗. Or equivalently, the energy ℰ(𝑟{𝑁}̲ ) has to be corrected by the energy

ℰamoebastat,corr(𝑟{𝑁}̲ ) ≔ 12
∑
1≤𝑖≤𝑁

∑
𝑗∈Mstat(𝑖)

(1 − 𝑠𝑖𝑗)L̂𝑖L̂𝑗
( 1|𝑟𝑖 − 𝑟𝑗|

)
, (v.17)

where Mstat(𝑖) contains the interactions with atom 𝑖 that have to be scaled.

Description of a polarisable force field

For an introductory lecture to polarisation, we refer to Pérez, Carles, and Fleckinger [PCF01]
and Kittel [Kit95]. For a more detailed support, the book from Böttcher [Böt73] has also a
discussion about multipoles.

As anticipated earlier, the electrostatic description of the molecular system is completed by
induced dipoles, using the Applequist model [ACF72]. The energy due to polarisation, which
decreases as 𝒪(|𝑟|−3), can have a major impact on molecular systems; in particular for the water
model, where hydrogen bonds have a large impact. Indeed, molecules such as water, that have
a permanent dipolar moment provokes displacements of electrons in neighbouring molecules,
which leads to the emergence of a dipolar moment in the all system. This cascade effect is called
polarisation. This effect is important with molecules that have 𝜋 bounds, and between systems
with permanent dipolar moments.
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For each atomic site 𝑖 at location 𝑟𝑖, the induced dipole is described by the unknown dipole-
moment 𝜇𝑖 and the total multipole operator for the site 𝑖 is therefore given by

L𝑖 ≔ 𝜇𝑖 ⋅ D𝑖 + L̂𝑖 = M0𝑖 + (M1𝑖 + 𝜇𝑖) ⋅ D𝑖 +M2𝑖 ⋅ D2𝑖 . (v.18)

We should repeat that the moments M𝑑𝑖 are static and fixed once and for all. The total electrostatic
energy

̃ℰtot(𝑟{𝑁}̲ ) ≔ 12
∑

1≤𝑖,𝑗≤𝑁𝑗≠𝑖
L𝑖L𝑗

( 1|𝑟𝑖 − 𝑟𝑗|
)

(v.19)

can then be decomposed into the static part ℰ(𝑟{𝑁}̲ ) and a part involving the induced dipoles

ℰtot(𝑟{𝑁}̲ ) ≔ ℰ(𝑟{𝑁}̲ ) + ℰipol(𝑟{𝑁}̲ ). (v.20)

The polarisation energy ℰipol(𝑟{𝑁}̲ ) is defined as the minimum of a functional ℰipol(𝑟{𝑁}̲ , 𝜇) with
respect to the induced dipoles 𝜇

ℰipol(𝑟{𝑁}̲ ) = inf𝜇∈R3𝑁 ℰipol(𝑟{𝑁}̲ , 𝜇) = −Estat ⋅ 𝜇𝑚 + 12𝜇𝑚 ⋅ 𝑇𝜇𝑚, (v.21)

where ℰipol(𝑟{𝑁}̲ , 𝜇) ≔ −Estat ⋅ 𝜇 + 12𝜇 ⋅ 𝑇𝜇. (v.22)

Here we use a compact notation where the set of induced dipoles 𝜇𝑖 and electric fields Ei,stat(𝑟𝑖) are
collected in global R3𝑁 vectors 𝜇 and Estat. The symmetric matrix 𝑇 denotes the 3𝑁 × 3𝑁-matrix
with off-diagonal block entries −𝑇𝑖𝑗 ∈ R3×3 and the block-diagonal given by 𝑇𝑖𝑖 = 𝛼−1𝑖 ∈ R3×3,
where the 𝛼𝑖 are the so-called polarisability tensors. The coefficients [𝑇𝑖𝑗]𝛾𝛾′ of the off-diagonal
(𝑖 ≠ 𝑗) blocks 𝑇𝑖𝑗 with 𝑖, 𝑗 ∈ ⟦1 . . 𝑁⟧ are explicitly given by

[𝑇𝑖𝑗]𝛾𝛾′ ≔ 𝜕𝛾 𝜕𝛾′
( 1|𝑟𝑖𝑗|

)
= 𝜕𝛾

⎛⎜⎜⎜⎜⎜⎜⎝−[𝑟𝑖𝑗]
𝛾′

|𝑟𝑖𝑗|3
⎞⎟⎟⎟⎟⎟⎠ = 3[𝑟𝑖𝑗]𝛾 [𝑟𝑖𝑗]𝛾

′

|𝑟𝑖𝑗|5 − 𝛿𝛾𝛾′
|𝑟𝑖𝑗|3 , (v.23)

with
𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗 =

([𝑟𝑖𝑗]𝑥, [𝑟𝑖𝑗]𝑦, [𝑟𝑖𝑗]𝑧
)T . (v.24)

We note that the diagonal part involving the polarisabilities in Eq. (v.21) can be thought as the
energetic cost for the polarisation to happen [BGS87].

The minimiser 𝜇𝑚 of Eq. (v.21) verifies the first-order optimality condition

𝑇𝜇𝑚 = Estat, (v.25)

which is called the polarisation equation. Moreover, we note that the induced energy is always
negative; this is because induction is always favorable to the molecular system. This equation can
be solved by directly inverting the 𝑇 matrix, if it is of small dimension. However in general, it is
solved using an iterative algorithm that stops when a residue is smaller than a desired threshold.

Scaling terms in the case of AMOEBA
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THOLE damping It appears that in some cases, the polarisation energy ℰipol(𝑟{𝑁}̲ , 𝜇) is un-
bounded from below in 𝜇; the often-called polarisation catastrophe. Indeed, at a mathematical
level, this is translated to the fact that the polarisation matrix 𝑇 is no longer positive definite and
has at least one negative eigenvalue. This typically arises when two atoms become close. Hence
the idea is to damp certain interactions when atoms are close and one of the most commonly
used (and empirical) scheme is the Thole damping [Tho81]. It consists of introducing the atom
dependent quantity 𝜆(𝑢𝑖𝑗) = 1 − exp

(−𝑎𝑢2𝑖𝑗
) , (v.26)

where 𝑎 is some positive parameter,

𝑢𝑖𝑗 = 9 𝑟𝑖𝑗
Tr(𝛼𝑖)Tr(𝛼𝑗) , (v.27)

𝛼 is the polarisability tensor and Tr is the trace operator.
The off-diagonal part (𝑖 ≠ 𝑗) of the polarisation matrix 𝑇 with components [𝑇𝑖𝑗]𝛾𝛾′ is then

replaced by the damped polarisation matrix

[𝑇Thole, 𝑖𝑗]𝛾𝛾′ = 𝜕𝛾
⎛⎜⎜⎜⎜⎜⎜⎝−𝜆(𝑢𝑖𝑗) [𝑟𝑖𝑗]

𝛾′

𝑟3𝑖𝑗
⎞⎟⎟⎟⎟⎟⎠ . (v.28)

Screening A particularity of the amoeba force field is that it uses two sets of electric fields,
called the direct and polar fields which are noted respectively E𝑑 and E𝑝. They differ by the
fact that the static electric field is screened [PC03] by two different sets of parameters 𝑠{𝑑,𝑝}𝑖𝑗 ,
as mentioned in Section i.e.2. This leads to two different sets of minimising induced dipoles
(see Eq. (v.21)) 𝜇𝑑 and 𝜇𝑝 given by

𝜇𝑑 = 𝑇−1
TholeE𝑑 and 𝜇𝑝 = 𝑇−1

TholeE𝑝. (v.29)
The amoeba polarisation energy is then defined asℰamoeba

ipol (𝑟{𝑁}̲ ) = −12𝜇𝑑 ⋅ E𝑝. (v.30)

The AMOEBA energy Combining the static electrostatic energy, the scaling and the polarisation
energy yields the amoeba energyℰamoebatot (𝑟{𝑁}̲ ) = ℰamoebastat (𝑟{𝑁}̲ ) + ℰamoeba

ipol (𝑟{𝑁}̲ ). (v.31)
The periodic case formalism using Ewald’s sums was introduced by Nymand and Linse [NL00].

The expression with particle mesh Ewald was described by Toukmaji et al. [Tou+00], and then
optimised by Wang and Skeel [WS05]. We refer the reader to Chapter ii for more information
about this.

Forces

Computing the energy of the system is of course not the only quantity of interest. In contrast,
computing the force that acts on each atomic site is indispensable for a molecular dynamics
simulation.

The forces at site 𝑖 is defined by
𝐹𝑖(𝑟𝑖) = −D𝑖ℰamoebatot (𝑟{𝑁}̲ ). (v.32)

Hence, for molecular dynamics we need to compute the matrices of third order partial deriva-
tives of the potentials, as well as the potential itself, the field, its gradient and its Hessian
(see Eq. (v.13)).
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I.F Continuum solvation and the COSMOmodel

To limit the need to represent every single solventmolecule, wemay also use an implicit description
with a continuum solvation model, such as the polarisable cosmo model [KS93; TP94]. Instead of
having explicit molecules, the solvent is modelled as a continuum medium with the bulk dielectric
permittivity of the solvent. The electrostatic solvent–solute interaction can then be computed by
solving an integral equation on the solute cavity-surface. The ddcosmo algorithm [CMS13] is a
discretisation of the cosmo model that takes advantage of the Schwarz domain decomposition
method to efficiently compute solution to this model.

This model can be coupled with a quantum mechanics method or a polarisable force field and
its complexity grows linearly with the number of quantum mechanics or molecular mechanics
atoms. Methods we developed in Chapters iii and iv were thought to allow for the possibility to
couple them with this continuum mechanics model, to be able to take into account a large bulk
of solvent.

We will only give a brief overview of the method, as we only make use of this model which
thus can be think as a black-box method that allows for more solvent to be described.

I.F.1 Coupling with variational polarisable force field

We define a variational polarisable force field as a force field whose energy can be written as the
minimum of an energy functional depending on the induced dipoles.

ℰvar ≔ min𝜇∈R𝑛 ℰvar(𝜇) = min𝜇∈R𝑛
(ℰinter + ℰVdW + ℰelec + ℰipol(𝜇)) . (vi.1)

The coupling between ddcosmo and a variational polarisable force field with induced dipoles
can be done by looking for the minimum of the functional [Lip+15]

ℰpol(𝑟{𝑁}̲ , 𝜇) ≔ −Estat ⋅ 𝜇 + 12𝜇 ⋅ 𝑇𝜇 + 12𝑓(𝜀)⟨𝜓(𝜇)|𝑋(𝜇)⟩, (vi.2)

where 𝑓(𝜀) is an empirical quantity that depends on the dielectric constant of the solvent, 𝜓(𝜇)
is a vector representing the solute’s molecular charge density distribution and 𝑋(𝜇) is a vector
representing the solvent polarisation. We have the notation

⟨𝑎|𝑏⟩ ≔ ∑
1≤𝑖≤𝑁

∑
1≤ℓ≤𝐿

∑
|𝑚|≤ℓ

[𝑎𝑖]𝑚ℓ [𝑏𝑖]𝑚ℓ , (vi.3)

where the [⋅]𝑚ℓ are the spherical harmonics expansion on the cavity with maximum angular
momentum 𝐿.

The solution of Eq. (vi.2) is given by solving the first-order optimality equation of the form

𝑇𝜇 + 12𝑓(𝜀)[𝐴𝑋(𝜇) + 𝐵𝑆(𝜇)] = Estat, (vi.4)

where 𝑋(𝜇) and 𝑆(𝜇) are solution of the following linear systems

𝐿𝑋(𝜇) = 𝑔(𝜇), (vi.5a)
𝐿∗𝑆(𝜇) = 𝜓(𝜇). (vi.5b)

For more details, we refer to Section 2 of Lipparini et al. [Lip+15].
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I.F.2 Coupling with AMOEBA

Due to the form of the polarisation energy functional given by Eq. (v.30), amoeba is not a
variational force field. However it is possible to write the functional as a sum of three variational
terms [Lip+15]

ℰpol(𝑟{𝑁}̲ ) = ℰpol(𝑟{𝑁}̲ , 𝜇𝑑 + 𝜇𝑝) − ℰpol(𝑟{𝑁}̲ , 𝜇𝑑) − ℰpol(𝑟{𝑁}̲ , 𝜇𝑝) (vi.6)

In Chapter iii, we use insight from this method to be able to couple molecular mechanics using
the amoeba force field and quantum mechanics, which open paths for fully polarisable molecular
dynamics on three different scales of physics.

I.G Sailing instructions

This work is being exposed in two part. The first one is directed at multiscale problems and
applications, with different physics scales: quantum, classical or continuous and different scales
of the computation. We will see how to accommodate for bigger and bigger problems, either on
one computer or on a network of them.

In Chapter ii we dwell into polarisable classical molecular dynamics and in particular Ewald’s
method of summation for periodic systems.

In Chapter iii we look at multiscale physics simulation of a molecular system using quantum
mechanics, molecular mechanics and possibly continuum solvation.

In Chapter iv we look at a way to improve the efficiency in the computing of the long-range
Coulombic potential when multipoles are used.

In the second part, we take some distance from applications, and look at the theories underlying
theoretical chemistry by looking at extrapolation methods for quantum mechanics.

In Chapter v we explore a way to use reduced-order models to quicken the computation of the
energy.

In Chapter vi we look at density matrices from a differential geometry point of view to quicken
the self-consistent field method in quantum mechanics.
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Chapter ii Polarisable classical molecular dynamics

Overview
Modified software TINKER

APIs • openmp • mpi

Visit rwth Aachen University (Aachen, three days, Apr. 2017) with Benjamin Stamm

Papers
• [Lag+15] Lagardère, Louis et al. “Scalable Evaluation of Polarization Energy

and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively
Parallel Computations Using Smooth Particle Mesh Ewald”. In: Journal of
Chemical Theory and Computation 11.6 (June 9, 2015), pp. 2589–2599. issn:
1549-9618

• [Nar+16] Narth, Christophe et al. “Scalable Improvement of SPME Multi-
polar Electrostatics in Anisotropic Polarizable Molecular Mechanics Using a
General Short-Range Penetration Correction up to Quadrupoles”. In: Journal
of Computational Chemistry 37.5 (2016), pp. 494–506. issn: 1096-987X

Collaborators
• Louis Lagardère • Yvon Maday • Christophe Narth • Jean-Philippe Piquemal
• Benjamin Stamm

II.A Problem statement

As we have briefly seen in Chapter i, the energy associated to the electrostatic potential poses a
particular challenge. It is an 𝑁-body problem: For a system of 𝑁 particles, we want to describe
how the system evolves when each particle is interacting with every other ones

ℰelec ≔ ∑
1⩽𝑖≠𝑗⩽𝑁

𝑘𝑒𝑖,𝑗|𝑟𝑗 − 𝑟𝑖| , (i.1)

where 𝑟𝑖 is the position of the 𝑖-th particle, and 𝑘𝑒𝑖,𝑗 are real parameters that we will explicit below.
The naive way to solve this by doing the explicit summation is of quadratic computational

complexity 𝒪(𝑁2), which quickly becomes insurmountable as the number of particles increases.
To speedup the computations, a simple method is to use cutoffs, where interactions farther than
a certain radius are truncated. However, neglecting parts of the Coulombic interaction — the
long-range effects, comes at the cost of less exploitable numerical results, as was shown by York
et al. [Yor+94].

In this chapter, we are interested in a particular class of methods to decrease the quadratic
computational cost of the electrostatic potential, namely the Ewald’s summation technique.
Ironically, the method works by considering an infinite periodic system in three dimensions. The
complexity then grows as 𝑁 log𝑁, as we are able to use fast Fourier transforms.

We will present a full derivation of this method, starting with basic axioms of molecular
mechanics, in the case of the amoeba polarisable force field. This chapter contains a pedagogical
overview of results for this method, with no new result, except a derivation for any multipole
order for what is commonly referred as the self-terms in Section ii.d.2.
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ii.b Derivation of Ewald’s summation method

We will see that using periodic boundary conditions comes at a cost, as the law that describes
the potential energy, the Coulomb’s law, forces us to manipulate Madelung sums. This implies
that the order of summation should be taken into account, which is not straightforward.

The periodic boundary conditions problem has been extensively studied in crystallography, as
crystals can be thought at a first-order approximation as a two- or three-dimensional periodic
systems. And the Ewald’s summation method was first developed for these cases. Nonetheless,
this model has also been successfully applied for interactions between chemical systems, even
for ones that do not seem to have any reason to be treated in a periodic way. That seems to be
explained by the extreme importance of the solvent, for example water molecules. That is a
reason why a huge part of the work by Ponder for the amoeba force field [RP03] was dedicated
to have an accurate model for water.

Indeed, when we consider molecular systems with periodicity, there may not be any reason
for them to feel the presence of their periodic images. We thus have to surround the systems
with enough water so it can evolve as if they were alone among the solvent. This is at the cost of
computational complexity. But without this, we may not be able to accurately compute physical
quantities for the system.

II.B Derivation of EWALD’s summationmethod

II.B.1 Electrostatic field

In this section, we use notation and formalism of Pérez, Carles, and Fleckinger [PCF01]. We
may also, instead of referring to a particle of index 𝑖 at position 𝑟𝑖 with charge 𝑞𝑖, use only one of
those properties as a shortcut to describe the particle.

We first start with the fundamental law that describes the interaction between charged particles.

Axiom ii.b.1 (Coulomb’s law).— We consider a system of two immobile point charges 𝑞1
and 𝑞2 in a vacuum.

• The magnitude of the electrostatic force that has a point charge 𝑞1 on another 𝑞2 is
inversely proportional to the square of the distance between the two charges.

• The vector goes from the charge 𝑞1 to 𝑞2.
We thus have the equality

F1→2 = 𝑔(𝑞1, 𝑞2)|𝑟21|2 𝑒21, (ii.1)

where 𝑟21 ≔ 𝑟2 − 𝑟1, 𝑒21 is the unit vector 𝑟21/|𝑟21|, and 𝑔(𝑞1, 𝑞2) is a scalar.

Experiments show that 𝑔(𝑞1, 𝑞2) = 𝑘𝑞1𝑞2, where 𝑘 is a constant. In the following, we will use
atomic units, where 𝑘 ≡ 1, as is customary in crystallography.

Definition ii.b.1 (Electrostatic field).— The electrostatic field created at a fictitious charge 𝑞
at 𝑟 by a charge 𝑞𝑖 at 𝑟𝑖 is

E𝑖(𝑟) ≔ F𝑖→𝑞𝑞 = 𝑞𝑖|𝑟 − 𝑟𝑖|2 𝑒𝑖 where 𝑒𝑖 ≔ 𝑟 − 𝑟𝑖|𝑟 − 𝑟𝑖| . (ii.2)

If we consider a (not necessarily continuous) charge distribution (or density) 𝑟 ↦ 𝜌(𝑟) in a
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Chapter ii Polarisable classical molecular dynamics

volume 𝑉, the field is
E(𝑟) ≔ ∫

𝑉
𝑟 − 𝑟 ′|𝑟 − 𝑟 ′|3𝜌(𝑟 ′)d𝑟 ′. (ii.3)

We note that this definition implies a discontinuity of the electrostatic field at the positions of
the charges.

We will also make use of the Maxwell–Gauss’ law. We note that this law still holds when the
charges are not stationary.

Axiom ii.b.2 (Maxwell–Gauss’ law).— With the previous notation, we have the differ-
ential form identity ∇ ⋅ E = 4𝜋𝜌. (ii.4)
We note that the 4𝜋 factor is due to the use of atomic units.

The differential form can be rewritten as an integral form using Stokes’ theorem.

Theorem ii.b.1 (Stokes).— Let E be a vector field on R3. Then for all volume 𝑉 of R3,

∫
𝜕𝑉

E ⋅ 𝑛d𝜎 = ∫
𝑉
∇ ⋅ Ed𝜏, (ii.5)

where 𝑛 is the normal vector pointing to the exterior.

Admitted proof: This is a classical theorem of analysis; see, e.g., the third volume of the series
about analysis from Godement [God01, chap. ix]. □

Theorem ii.b.2 (Gauss).— With the previous notation,

14𝜋 ∫
𝜕𝑉

E ⋅ 𝑛d𝜎 = ∫
𝑉
𝜌d𝜏. (ii.6)

Proof: It is a direct consequence of Axiom ii.b.2 using Stokes’ theorem. ◼
II.B.2 Electrostatic potential energy

Let E be an electrostatic field
E(𝑟) = 𝑁∑

𝑖=1
𝑞𝑖 𝑟 − 𝑟𝑖|𝑟 − 𝑟𝑖|3 . (ii.7)

The Coulomb force being conservative, there is a function ℰ, such that for a fictitious charge 𝑞
at 𝑟

F = 𝑞E = −∇ℰ with ℰ(𝑟) = 𝑞 𝑁∑
𝑖=1

𝑞𝑖|𝑟 − 𝑟𝑖| + 𝑐, (ii.8)

where 𝑐 is a scalar. By having |𝑟| → +∞, we can chose a convention where 𝑐 ≡ 0. The function ℰ
is called the electrostatic potential energy of interaction, and 𝜙 ≔ ℰ/𝑞 is called the electrostatic
potential.
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ii.b Derivation of Ewald’s summation method

Definition ii.b.2.— The difference of electrostatic potential energy — often shortened as
electrostatic energy — at (𝑞, 𝑟) due to the force F is

𝐸(𝑟) ≔ ℰ(𝑟) − ℰ(𝑟ref) = −∫𝑟ref
𝑟

F(𝑟 ′)d𝑟 ′. (ii.9)

With the convention ℰ(𝑟ref ≡ +∞) = 0, we have

𝐸(𝑟) = ℰ(𝑟) = 𝑞𝜙(𝑟). (ii.10)
To simplify the notations, we will use the following convention.

Notation.— The vectors 𝑟𝑗 − 𝑟𝑖 and 𝑟𝑗 − 𝑟𝑖 + 𝑛 can be shortened respectively by 𝑟𝑗𝑖 and 𝑟𝑗𝑖𝑛.
We can now define the electrostatic potential energy for a system of 𝑁 point charges.

Definition ii.b.3 (Electrostatic potential energy).— For 𝑁 point charges 𝑟{𝑁}̲ ≔ (𝑟1,… , 𝑟𝑁),
the electrostatic potential energy is

ℰ0(𝑟{𝑁}̲ ) ≔ ∑
1≤𝑖<𝑗≤𝑁

𝑞𝑖𝑞𝑗|𝑟𝑗 − 𝑟𝑖| =
12

𝑁∑
𝑖=1

𝑁∑
𝑗=1𝑗≠𝑖

𝑞𝑖𝑞𝑗|𝑟𝑗 − 𝑟𝑖| =
12

𝑁∑
𝑖=1

𝑞𝑖𝜙𝑖(𝑟𝑖), (ii.11)

where
𝜙𝑖(𝑟) ≔ 𝑁∑

𝑗=1𝑗≠𝑖

𝑞𝑗|𝑟𝑗 − 𝑟| . (ii.12)

There is an equivalent to the Maxwell–Gauss’ law for the electrostatic potential. It is given by
the Poisson equation.

Theorem ii.b.3 (Poisson equation).— Let 𝜙 be an electrostatic potential and 𝜌 its charge
distribution. Then we have ∆𝜙 = −4𝜋𝜌. (ii.13)

Proof: By using Axiom ii.b.2 and the fact that the force is conservative, we have

∆𝜙 def.= ∇ ⋅
(∇ℰ𝑞 )

= ∇ ⋅ −F𝑞 def.= −∇ ⋅ E = −4𝜋𝜌. (ii.14)◼
Of particular interest for us are the potentials due to the point charge density 𝜌𝑖(𝑟) and to the

Gaussian density 𝜌𝑖𝑔(𝑟). The densities

𝜌𝑖(𝑟) ≔ 𝑞𝑖𝛿(𝑟 − 𝑟𝑖) and 𝜌𝑖𝑔(𝑟) ≔ 𝑞𝑖
(𝛼𝜋

)3/2
exp(−𝛼|𝑟 − 𝑟𝑖|2),

have respective potentials

𝜙𝑖(𝑟) = 𝑞𝑖|𝑟 − 𝑟𝑖| and 𝜙𝑖𝑔(𝑟) = 𝑞𝑖|𝑟 − 𝑟𝑖| erf(𝛼1/2|𝑟 − 𝑟𝑖|),
where 𝛼 is a strictly positive parameter and the error function erf is defined next.
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Definition ii.b.4 (Error function).— Let 𝑉 be the volume of the primitive unit cell 𝑈, and 𝑈∗
its dual. The error function erf is defined on R by

erf(𝑟) ≔ 2√𝜋 ∫𝑟
0
exp(−𝑡2)d𝑡, (ii.15)

and the complementary error function erfc by 1 ≡ erf+ erfc. See Fig. ii.2a Page 40 for a plot
of these two functions.

II.B.3 Periodic particle distribution

From Eq. (ii.11), we see that the computational cost of the electrostatic energy quickly increases:
quadratically in the number of point charges. However, if we consider a periodic system — a
Bravais lattice, we can then use the Ewald’s summation method to reduce the computational
complexity of numerical results.

Figure ii.1: Schematic two-dimensional lattice with a primitive unit cell at the centre

In this section, we will introduce the concepts for the electrostatic energy in a periodic system.
This method has mostly been developed in crystallography, hence the vocabulary that is used.
However Ewald’s summation method can be used for any Coulombic periodic system. In Fig. ii.1,
we give a schematic description for a two-dimensional lattice, where a primitive unit cell is
highlighted in the centre.

In the following, we will use notation from Darden [Dar08]. Moreover, we first only introduce
the problem for point charge distribution. Wewill present the case of multipoles up to quadrupoles,
which are used by the amoeba force field, in Section ii.d.

Definition ii.b.5.— We note 𝑟{∞}̲ an infinite lattice of point charges in R3.
• A unit cell is a compact subspace without charge on its border, such that a lattice can

be described by translation of the unit cell with a set of linearly independent vectors —
called primitive vectors;

• a primitive unit cell is a unit cell that has the least number of point charges.
Next, we introduce notation for the lattice and its dual. They will be used throughout this

chapter, in particular when we will refer to the direct and reciprocal sums.
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ii.b Derivation of Ewald’s summation method

Notation.— Let (𝑎1, 𝑎2, 𝑎3) be a basis of primitive vectors, and (𝑎∗1, 𝑎∗2, 𝑎∗3) its dual basis. That
is 𝑎∗𝑖 ⋅ 𝑎𝑗 = δ𝑖𝑗 for 𝑖, 𝑗 ∈ {1, 2, 3}. If we note 𝑉 ≔ det(𝑎1, 𝑎2, 𝑎3) the volume of the unit cell and ∧
the exterior product, we have

𝑎∗1 = 𝑎2 ∧ 𝑎3𝑉 , 𝑎∗2 = −𝑎1 ∧ 𝑎3𝑉 and 𝑎∗3 = 𝑎1 ∧ 𝑎2𝑉 . (ii.16)

This dual basis will be of intensive use when using Fourier transforms later on.
We will also use the notation

𝑛 ≔ 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3, 𝑚 ≔ 𝑚1𝑎∗1 + 𝑚2𝑎∗2 + 𝑚3𝑎∗3, and 𝑟 ≔ 𝑠1𝑎1 + 𝑠2𝑎2 + 𝑠3𝑎3, (ii.17)

where for 𝛾 = 1, 2, 3, 𝑛𝛾 and 𝑚𝛾 are integers, and 𝑠𝛾 are reals. The vectors 𝑛 are points on the
lattice and the covectors 𝑚 points on the dual lattice.
The cells in the dual space are known as the Brillouin zones; the primitive unit cell in the

dual space is known as the first Brillouin zone.
Let 𝑈 be a unit cell that we will copy in every direction in the space. The total energy for such

a system can be defined as the sum of the energy ℰ0 of the primitive unit cell and the energies
between the primitive unit cell and its copies. We have the following definition.

Definition ii.b.6.— Let 𝑟{𝑁}̲ be the lattice in a primitive unit cell, we then define the energy
of the periodic system by

ℰ(𝑟{𝑁}̲ ) ≔ 12
∑′
𝑛

∑
1≤𝑖,𝑗≤𝑁

𝑞𝑖𝑞𝑗|𝑟𝑗 − 𝑟𝑖 + 𝑛| , (ii.18)

where the prime indicates that we should exclude the indices 𝑖 = 𝑗 when 𝑛 = 0. When we do
not precise the summation — as it is the case here for the sum over 𝑛, it should be assumed
that the sum is for all boxes in R3 (i.e., 𝑛 ∈ Z3 for a unit cubic cell).
Let 𝑈 be a unit cell composed of 𝑁 point charges 𝑞𝑖, for 𝑖 ∈ ⟦1 . . 𝑁⟧. We will look at the

condition for the previous sum to converge. For this, we introduce 𝒬 ≔ ∑𝑁𝑖=1 𝑞𝑖 the total charge
of the unit cell 𝑈 and D ≔ ∑𝑁𝑗=1 𝑞𝑗𝑟𝑗 its dipolar moment.

To look at the convergence, we first do a Taylor expansion of the inverse function with respect
to the cells.

Proposition ii.b.1.— There exist two vectorial constants such that for any integers 𝑖
and 𝑗, and with 𝐶1 = 𝐶1(𝑖, 𝑗) and 𝐶2 = 𝐶2(𝑖, 𝑗) such that asymptotically as |𝑛| → +∞

1|𝑟𝑗 − 𝑟𝑖 + 𝑛| = 1|𝑛| +
∑
1≤𝛾≤3

𝐶1𝛾
𝑛𝛾|𝑛|3 + ∑

1≤𝛾,𝛾′≤3
𝐶2𝛾,𝛾′

3𝑛𝛾𝑛𝛾′ − δ𝛾𝛾′|𝑛|2
|𝑛|5 + 𝒪( 1|𝑛|4

) . (ii.19)

Proof: Let ̄𝑟 ≔ 1
𝑁
∑

1≤𝑖≤𝑁 𝑟𝑖 and ̄𝑟𝑛 ≔ ̄𝑟 + 𝑛 be respectively the centre of mass for the primitive
unit cell 𝑈 and its image by the vector 𝑛.

Then, using the notation Δ𝑟𝑖 def.= 𝑟𝑖 − ̄𝑟, Δ𝑟𝑗 def.= 𝑟𝑗 − ̄𝑟 and Δ𝑖𝑗 = Δ def.= Δ𝑟𝑖 − Δ𝑟𝑗, we have

1|𝑟𝑗 − 𝑟𝑖 + 𝑛| = 1|(𝑟𝑗 − ̄𝑟) + ( ̄𝑟 − ̄𝑟𝑛) + ( ̄𝑟𝑛 − 𝑟𝑖𝑛)| =
1|𝑛 − Δ| = 1√∑3𝛾=1(𝑛𝛾 − Δ𝛾)2

. (ii.20)
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If we now omit the sum on 𝛾, to lighten the notations, we have

1|𝑟𝑗 − 𝑟𝑖 + 𝑛| = 1√(𝑛𝛾 − Δ𝛾) δ𝛾𝛾′(𝑛𝛾′ − Δ𝛾′) =
|𝑛|−1√

1 − 2𝑛𝛾 δ𝛾𝛾′ Δ𝛾′
|𝑛|2 + Δ𝛾 δ𝛾𝛾′ Δ𝛾′

|𝑛|2
. (ii.21)

Finally, we find by a Taylor expansion as |𝑛| → +∞ that

1|𝑟𝑗 − 𝑟𝑖 + 𝑛| = |𝑛|−1
1 − 𝑛𝛾 δ𝛾𝛾′ Δ𝛾′

|𝑛|2 + 1
2
(Δ𝛾 δ𝛾𝛾′ Δ𝛾′

|𝑛|2 − 𝑛𝛾 δ𝛾𝛾′ Δ𝛾′𝑛𝜐 δ𝜐𝜐′ Δ𝜐′
|𝑛|4

)
+ 𝒪 (|𝑛|−3)

= 1|𝑛| +
𝑛𝛾 δ𝛾𝛾′ Δ𝛾′

|𝑛|3 − 12
⎛⎜⎜⎜⎜⎜⎜⎝Δ𝛾 δ𝛾𝛾

′ Δ𝛾′
|𝑛|3 − 𝑛𝛾 δ𝛾𝛾′ Δ𝛾′𝑛𝜐 δ𝜐𝜐′ Δ𝜐′|𝑛|5

⎞⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝𝑛𝛾 δ

𝛾𝛾′ Δ𝛾′
|𝑛|5/2

⎞⎟⎟⎟⎟⎟⎟⎠
2
+ 𝒪 (|𝑛|−4)

= 1|𝑛| +
𝑛𝛾 δ𝛾𝛾′ Δ𝛾′

|𝑛|3 + 3𝑛𝛾𝑛𝜐 δ𝛾𝛾′ δ𝜐𝜐′ − δ𝜐′𝛾′|𝑛|2
2|𝑛|5 Δ𝛾′Δ𝜐′ + 𝒪 (|𝑛|−4) .

(ii.22)

This concludes the proof of this proposition. ◼
From this result we can deduce the following proposition.

Proposition ii.b.2.— There is a vectorial constant 𝐶 such that for all vector 𝑛 ∈ R3 ∖ {0}
∑

1≤𝑖,𝑗≤𝑁
𝑞𝑖𝑞𝑗|𝑟𝑗 − 𝑟𝑖 + 𝑛| = 𝒬2

|𝑛| +
∑

1≤𝛾,𝛾′≤3
3𝑛𝛾𝑛𝛾′ − δ𝛾𝛾′|𝑛|2

|𝑛|5
(𝒬𝐶𝛾,𝛾′ − D𝛾D𝛾′

) + 𝒪 ( 1|𝑛|4
) . (ii.23)

Proof: This result is a direct consequence of the previous proposition. ◼
This result implies the series from Eq. (ii.18) can only converge with respect to 𝑛 if the primitive

unit cell is neutral, i.e., 𝒬 = 0. Moreover, even in this case it will only be conditionally convergent
in most cases because 𝑟 ↦ 1/|𝑟|3, which is present in the second term of the sum, is not integrable
on R3. We will explain in the following the notion of conditional convergence.

We note that when 𝒬 ≠ 0, even as the energy series diverges, the problem may still be of
interest, as explained by Wolf et al. [Wol+99].

Definition ii.b.7.— We introduce different notion of convergence for series.

(i) A series ∑𝑛∈N 𝑎𝑛 is convergent if the limit lim𝑁→+∞∑
0≤𝑛≤𝑁 𝑎𝑛 exists and is finite.

(ii) A series is absolutely convergent if the series ∑𝑛∈N|𝑎𝑛| is convergent.
(iii) A series is conditionally convergent if it is convergent but not absolutely convergent.
A conditionally convergent series makes the computation of its sum more difficult due to the

following theorem.

Theorem ii.b.4 (Riemann series theorem).— Let (𝑎𝑛) be a conditionally convergent
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ii.b Derivation of Ewald’s summation method

series. Then, for all ℓ1, ℓ2 ∈ R ∪ {−∞,+∞}, there exists a permutation 𝜎 of N such that

ℓ1 = lim inf𝑁→+∞
𝑁∑

𝑛=0
𝑎𝜎(𝑛) and ℓ2 = lim sup𝑁→+∞

𝑁∑
𝑛=0

𝑎𝜎(𝑛). (ii.24)

Admitted proof: See for example the book of Ponnusamy [Pon12]. □
Thus, in addition to the geometry of the primitive cell, the order in which we do the summation

is essential.
As it is often the case in literature, in the following we will assume that the primitive unit

cell 𝑈 is cubic and such that
𝑈 = {𝑟 = 𝑠1𝑎1 + 𝑠2𝑎2 + 𝑠3𝑎3

|||| −12 ≤ 𝑠𝛾 ≤ 12, 𝛾 = 1, 2, 3}. (ii.25)

This choice does not change the underlying results, but may change the values of some quantities
that we will compute, such as the surface term that can be seen as the representation of the
distribution of charges on the macroscopic surface of the system. Regarding the summation, it
is usual in the literature to use sums in spheres of radius 𝑁 ∈ N (such that |𝑛|2 ≤ 𝑁) or cubes
of length 2𝑁 (for which max𝛾∈{1,2,3}|𝑛𝛾| ≤ 𝑁). We refer the reader to Section ii.d.1 for a more
detailed discussion about this point.

II.B.4 EWALD’s summation

Definition and convergence

Ewald [Ewa21] proposed a method of summation in 1921 to rewrite the computation of the
periodic boundary conditions electrostatic energy as the sum of two series that converge quickly.
One of them, the direct sum, only consists on summations for a small number of particles; often
the ones in the primitive unit cell. The second, the reciprocal sum, has a function regular enough
for its Fourier transform to also converge quickly.

This technique however consists in reordering the sum, so it is equivalent only if the sum is
absolutely convergent, which is the case only if the dipolar moment of the primitive unit cell 𝑈 is
zero.

The separation of the energy by Ewald into two sums is done by using the error function,
and this is what we present here. However, we could have considered other functions, see for
example [HE88].

Definition ii.b.8 (Ewald energy).— We will call Ewald energy the quantity

ℰEwald(𝑟{𝑁}̲ ) ≔ 12
∑′
𝑛

∑
1≤𝑖,𝑗≤𝑁

𝑞𝑖𝑞𝑗 erfc(𝛼
1/2|𝑟𝑗𝑖𝑛|)|𝑟𝑗𝑖𝑛| − (𝛼𝜋

)1/2 𝑁∑
𝑗=1

𝑞2𝑗
+ 12𝜋𝑉

∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 |𝑆(𝑚)|2, (ii.26)

where the structure factor 𝑆(𝑚) is defined as

𝑆(𝑚) ≔ 𝑁∑
𝑗=1

𝑞𝑗 exp(2𝑖𝜋𝑚 ⋅ 𝑟𝑗), (ii.27)

and 𝛼 is a positive real called Ewald coefficient. The third term of the sum is called reciprocal
energy and noted ℰ𝑟. The quantity ℰ𝑑 ≔ ℰEwald − ℰ𝑟 is the direct energy. The constant term of
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the direct energy is sometimes called self-term, and noted ℰself. It has no physical meaning,
and is a side effect of the reordering of the sum.
As we will show in the following, the two series converge quickly. But first, we need the

following theorem of comparison between series and integrals.

Theorem ii.b.5.— Let 𝑓∶ R+ → R+ be a decreasing function. Then, the integral ∫+∞
0 𝑓

and the series ∑𝑛∈N 𝑓(𝑛) have the same kind of convergence.

Admitted proof: This is a classical theorem on series. See for example the lecture of Arnaudiès
and Fraysse [AF93, chap. viii]. □

Proposition ii.b.3.— The series of the Ewald energy are absolutely convergent.

Proof: To show this, it is sufficient to show that each of the two series are absolutely convergent.
Using the previous theorem of comparison, this is true if the associated functions are integrable
at infinity.

First, for the reciprocal sum, it suffices to notice that the function 𝑟 ↦ exp(−𝜋2|𝑟|2/𝛼)/|𝑟|2 is
integrable for all 𝛼 ∈ R∗+

∫
R3

exp(−𝜋2|𝑟|2/𝛼)|𝑟|2 d3𝑟 = 4𝜋∫+∞
0

exp(−𝜋2𝑟2/𝛼)d𝑟 = 2𝛼1/2√𝜋. (ii.28)

We do the same for the direct sum. Let 𝛼 ∈ R∗+ and B3 ⊂ R3 be the unit ball, then we have

∫
R3∖B3

erfc(𝛼1/2|𝑟|)4𝜋|𝑟| d3𝑟 = ∫+∞
1

𝑟 ⋅ erfc(𝛼1/2𝑟)d𝑟 =
[𝑟22 erfc(𝛼1/2𝑟)

]+∞
1

−∫+∞
1

𝑟22
(
− 2√𝜋𝛼1/2𝑒−𝛼𝑟2

)
d𝑟

= − erfc(𝛼1/2)2 + 1√𝜋 ∫+∞
1

𝑟 ⋅ 𝛼1/2𝑟𝑒−𝛼𝑟2 d𝑟
= − erfc(𝛼1/2)2 + 1√𝜋

[
−𝑟 𝑒−𝛼𝑟22𝛼1/2

]+∞
1

+ 1√𝜋 ∫+∞
1

𝑒−𝛼𝑟22𝛼 d𝑟
= 1 − 2𝛼4𝛼 erfc(𝛼1/2) + exp(−𝛼)

2𝛼1/2√𝜋. (ii.29)

Hence, we have the result. ◼
We notice a singularity in the direct sum as the Ewald coefficient 𝛼 goes to zero. This is

consistent with the fact that the series of ℰ(𝑟{𝑁}̲ ) is in general conditionally convergent.
Moreover, as will be shown just below, the function erfc has the same behaviour as the func-

tion exp(−⋅2). Hence, increasing the Ewald coefficient crushes exponentially quickly the direct
energy, whereas the increase in the reciprocal sum is sub-linear.

Proposition ii.b.4.— We have the equivalence

erfc(𝛼1/2) ∼ exp(−𝛼)
𝛼1/2√𝜋 , (ii.30)

as 𝛼 goes to infinity.
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ii.b Derivation of Ewald’s summation method

Proof: Let 𝛼 > 0 be a strictly positive number. Then using the property that the product of any
polynomial function with exp(−⋅2) is integrable on R, we have

erfc(𝛼1/2) = ∫+∞
𝛼 𝑡−1/2𝑒−𝑡 d𝑡√𝜋 = 𝑒−𝛼∫+∞

0
𝑒−𝑡2√𝛼 + 𝑡2 d𝑡 = 2𝑒−𝛼

𝛼1/2√𝜋 ∫+∞
0

𝑡
(
1 − 𝑡22𝛼1/2 + 𝒪 (𝛼−1)

)
𝑒−𝑡2 d𝑡

= 𝑒−𝛼
𝛼1/2√𝜋 + 𝒪 (𝛼−1) .

(ii.31)

This concludes the proof. ◼
Hence, the Ewald coefficient is a parameter that influences the cost of computing the direct or

reciprocal sum in the evaluation of the energy. We also note that when 𝛼 → 0, we recover the
naive summation. In the literature, when doing molecular dynamics for molecular systems, 𝛼 is
often chosen such that the point charges further than 9 ångströms can be neglected in the direct
sum.

Electrostatic energy of a periodic system

We now look at how to derive the Ewald energy by splitting the inverse function in two using the
error function. The first demonstration is due to Smith [Smi81] in 1981, who used Legendre
transforms. Here, we follow the proof of Darden [Dar08].

Lemma ii.b.1.— For all non-zero vector 𝑟, we have the identity

1|𝑟| = erfc(𝛼1/2|𝑟|)|𝑟| + 1𝜋
∑
𝑚

∫
𝑈∗

exp(−𝜋2|𝑣 + 𝑚|2/𝛼)|𝑣 + 𝑚|2 exp(−2𝑖𝜋(𝑣 + 𝑚) ⋅ 𝑟)d3𝑣, (ii.32)

where the sum for 𝑚 is on all covectors of which we will omit the indices.

We note the existence of an analogue formula for any function 𝑟 ↦ 1/|𝑟|𝑝, for all 𝑝 > 0. We
refer to the articles of Essmann et al. [Ess+95] and of Darden [Dar08]. This enables the use of
the same method for other energies, such as the Van der Waals energy. However, due to the
quick decrease of such energies, this splitting is in practice only done for the electrostatic energy.

The proof is as follow.

Proof: Let Γ be the gamma function. We have [Col21b]

√𝜋 = Γ(1/2) = ∫+∞
0

𝑡−1/2𝑒−𝑡 d𝑡 = 𝜆1/2∫+∞
0

𝑡−1/2𝑒−𝜆𝑡 d𝑡. (ii.33)

Hence, if we replace 𝜆 with |𝑟|2,
1|𝑟| = 1√𝜋

(∫+∞
𝛼

+∫𝛼
0

)
𝑡−1/2 exp(−|𝑟|2𝑡)d𝑡

= 1√𝜋 ∫+∞
𝛼

𝑡−1/2𝑒−|𝑟|2𝑡 d𝑡 + 1√𝜋 ∫𝛼
0
𝑡−1/2 (𝜋𝑡

)3/2∫
R3

𝑒−𝜋2|𝑢|2/𝑡𝑒−2𝑖𝜋𝑢⋅𝑟 d3𝑣d𝑡.
(ii.34)
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Chapter ii Polarisable classical molecular dynamics

By using Fubini’s theorem [Col21a], and after a change of variables, we obtain

1|𝑟| = 1√𝜋 ∫+∞
𝛼1/2|𝑟|

2|𝑟|𝑒−𝑠2 d𝑠 + 𝜋∫
R3

∫+∞
𝜋|𝑢|/𝛼1/2

2𝑠𝜋2|𝑢|2 𝑒−𝑠2𝑒−2𝑖𝜋𝑢⋅𝑟 d𝑠d3𝑢
= erfc(𝛼1/2|𝑟|)|𝑟| + 𝜋𝛼 ∫

R3
𝑒−2𝑖𝜋𝑢⋅𝑟 𝑒−𝜋2|𝑢|2/𝛼

𝜋2|𝑢|2/𝛼 d3𝑢
=

Fubini
erfc(𝛼1/2|𝑟|)|𝑟| + 1𝜋

∑
𝑚

∫
𝑈∗

exp(−𝜋2|𝑣 + 𝑚|2/𝛼)|𝑣 + 𝑚|2 exp (−2𝑖𝜋(𝑣 + 𝑚) ⋅ 𝑟)d3𝑣.
(ii.35)

We notice that the sum is well defined, as the function under the integral is integrable on 𝑈∗
for 𝑚 = 0, because 𝑣 ↦ |𝑣|−2 ∈ L1loc(R3). Hence, we obtain the lemma. ◼

We refer to Figs. ii.2 and ii.3 for respectively one- and two-dimensional examples of the splitting
of the inverse function using the error function.
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(b) Range separation with 𝛼 = 1
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with 𝛼 = 7.42 for a truncation

at 1.0 ångström

Figure ii.2: Range separation in 1D
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(b) Function 𝑟 ↦ erf(𝑟)/𝑟

−2 0 2 −2
0

2
0
2
4

(c) Function 𝑟 ↦ erfc(𝑟)/𝑟
Figure ii.3: Range separation in 2D

Physically, what we have done is to split the potential in two using the identity erf+ erfc ≡ 1.
The function 𝑟 ↦ erfc(𝑟)/𝑟 decreases quickly and can thus be truncated when 𝑟 is large enough.
In the reciprocal sum, we can see the Fourier transform of 𝑣 ↦ exp(−𝜋2|𝑣+𝑚|2/𝛼)

|𝑣+𝑚|2 . This will enable
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ii.b Derivation of Ewald’s summation method

us to use fast Fourier transforms, which will decrease the computational complexity required to
compute the electrostatic energy of a periodic boundary conditions molecular system.

This explains that in the literature, the direct energy is often said to take into account particles
that are close together and the reciprocal energy the long-range interactions. However, the
reciprocal energy also includes Fourier modes of short-range interactions.

To account for the order of summation, which can be thought as the macroscopic shape of the
system, we introduce the following notation.

Notation.— For a set 𝑃 ⊂ R3 and a strictly positive integer 𝐾, we define the set

Ω(𝑃, 𝐾) ≔
⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑛 = ∑

1≤𝛾≤3
𝑛𝛾𝑎𝛾

|||||||
(𝑛𝛾)1≤𝛾≤3 ∈ Z3
|𝑛|/𝐾 ∈ 𝑃

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (ii.36)

The energy ℰ𝑃,𝐾 of a lattice 𝑟{𝑁}̲ in the volume Ω(𝑃, 𝐾) is defined as

ℰ𝑃,𝐾(𝑟{𝑁}̲ ) ≔ 12
∑′

𝑛∈Ω(𝑃,𝐾)
∑

1≤𝑖,𝑗≤𝑁
𝑞𝑖𝑞𝑗|𝑟𝑗 − 𝑟𝑖 + 𝑛| , (ii.37)

and 𝐽(D, 𝑃, 𝐾) is the quantity

𝐽(D, 𝑃, 𝐾)2𝜋 ≔ ∑
𝑛∈Ω(𝑃,𝐾)

∫
𝑈∗

(𝑣 ⋅ D)2|𝑣|2 exp(−2𝑖𝜋𝑣 ⋅ 𝑛)d3𝑣. (ii.38)

We have now all the tools to show the central result for the Ewald’s summation method.

Theorem ii.b.6 (Smith).— Let 𝑃 be a symmetric compact subset of R3, that is 𝑟 ∈ 𝑃 if
and only if −𝑟 ∈ 𝑃. Then for any lattice 𝑟{𝑁}̲ ,

ℰ𝑃,𝐾(𝑟{𝑁}̲ ) = ℰEwald(𝑟{𝑁}̲ ) + 𝐽(D, 𝑃, 𝐾) + 𝜀(𝐾), (ii.39)

where 𝜀(𝐾) ⟶𝐾→+∞ 0.
As for the previous lemma, we use the proof of Darden [Dar08], which is less general than

this one originally proposed by Smith [Smi81]. We will use the classical Dirichlet’s theorem.

Theorem ii.b.7 (Dirichlet’s theorem).— Let 𝑓 be a periodic and locally integrable
function, 𝒞1 by parts, i.e., 𝑓 ∈ L1loc(R/Z) ∩ 𝒞1pm. Then, for any 𝑡 ∈ R/Z,

lim𝑛→∞
𝑛∑

𝑘=−𝑛
ℱ(𝑓)(𝑘) exp(2𝑖𝜋𝑘𝑡) = 𝑓(𝑡−) + 𝑓(𝑡+)2 , (ii.40)

where 𝑓(𝑡±) = lim𝑠→𝑡± 𝑓(𝑡). (ii.41)

Admitted proof. □
Proof of Theorem ii.b.6: First, we introduce the notation ℎ𝑚,𝑟 for the second term of the
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Chapter ii Polarisable classical molecular dynamics

equality in Eq. (ii.32) as

ℎ𝑚,𝑟(𝑣) def.= exp(−𝜋2|𝑣 + 𝑚|2/𝛼)|𝑣 + 𝑚|2 exp(−2𝑖𝜋(𝑣 + 𝑚) ⋅ 𝑟). (ii.42)

We want to reorder the terms of the sum to simplify it as a sum of ℎ𝑚,𝑟(0). However, for 𝑚 = 0,
the function is not well defined.

This term is what will result in what is called the surface term. As it corresponds to the zeroth
Fourier mode of the expression of the Gaussian potential in Fourier, it cannot be known using
the Poisson equation in Fourier. This explains its absence in the derivations of the Ewald sum:
it was arbitrarily set to zero. We will come back to it later.
We notice that for any relative integers 𝑛 and 𝑚, we have exp(−2𝑖𝜋𝑚 ⋅ 𝑛) = 1, so with 𝑉 the

volume of the unit cell

𝐼 def.= ∑
𝑛

∑
𝑚≠0

∫
𝑈∗

ℎ𝑚,𝑟(𝑣) exp(−2𝑖𝜋(𝑣 + 𝑚) ⋅ 𝑛)d3𝑣 = 1𝑉
∑
𝑛

∑
𝑚≠0

ℱ (ℎ𝑝𝑚,𝑟
) (𝑛)

=
Fubini

1𝑉
∑
𝑚≠0

∑
𝑛
ℱ (ℎ𝑝𝑚,𝑟

) (𝑛) exp(2𝑖𝜋0 ⋅ 𝑛)
=

Thm. ii.b.7
1𝑉
∑
𝑚≠0

ℎ𝑚,𝑟(0).
(ii.43)

Moreover, at 𝑣 = 0, the Taylor expansion with respect to 𝑣 is

ℎ0,𝑟(𝑣) = 1 − 2𝑖𝜋𝑣 ⋅ 𝑟 − 2𝜋2(𝑣 ⋅ 𝑟)2|𝑣|2 − 𝜋2
𝛼 + 𝜃(𝑣), (ii.44)

where the 𝜃 function is smooth, bounded for any order of derivation and 𝜃(0) = 0.
Thus, if 𝑟 ≠ 0, using Lemma ii.b.1, we find that

𝜁(𝑟) def.= ∑
𝑛∈Ω(𝑃,𝐾)

1|𝑟 + 𝑛|
= ∑

𝑛
erfc(𝛼1/2|𝑟 + 𝑛|)|𝑟 + 𝑛| + 𝐼𝜋 + 1𝜋

∑
𝑛∈Ω(𝑃,𝐾)

∫
𝑈∗

ℎ0,𝑟(𝑣) exp(−2𝑖𝜋𝑣 ⋅ 𝑛)d3𝑣 + 𝜀1,𝑟(𝛼, 𝐾),
(ii.45)

with 𝜀1,𝑟 = 𝑜(1) the error made by doing in the first term above the summation on all terms, and
not only on 𝑛 ∈ Ω(𝑃, 𝐾). Hence, we have

𝜁(𝑟) = ∑
𝑛

erfc(𝛼1/2|𝑟 + 𝑛|)|𝑟 + 𝑛| − 𝜋𝛼𝑉
∑

𝑛∈Ω(𝑃,𝐾)
𝛿(𝑛)

+ 1𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 exp(−2𝑖𝜋𝑚 ⋅ 𝑟) + 1𝜋𝐻𝑃,𝐾(𝑟) + 𝜀2,𝑟(𝛼, 𝐾), (ii.46)

where
𝐻𝑃,𝐾(𝑟) def.= ∑

𝑛∈Ω(𝑃,𝐾)
∫
𝑈∗

1 − 2𝑖𝜋𝑣 ⋅ 𝑟 − 2𝜋2(𝑣 ⋅ 𝑟)2|𝑣|2 exp(−2𝑖𝜋𝑣 ⋅ 𝑛)d3𝑣, (ii.47)

and
𝜀2,𝑟(𝛼, 𝐾) def.= 𝜀1,𝑟(𝛼, 𝐾) + 1𝜋𝑉

∑
𝑛∈Ω(𝑃,𝐾)

ℱ(𝜃𝑃)(𝑛) = 𝑜(1). (ii.48)

Finally, we obtain
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ii.b Derivation of Ewald’s summation method

𝜁(𝑟) = ∑
𝑛

erfc(𝛼1/2|𝑟 + 𝑛|)|𝑟 + 𝑛| − 𝜋𝛼𝑉
+ 1𝜋𝑉

∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 exp(−2𝑖𝜋𝑚 ⋅ 𝑟) + 1𝜋𝐻𝑃,𝐾(𝑟) + 𝜀2,𝑟(𝛼, 𝐾). (ii.49)

To compute ℰ𝑃,𝐾, we can use the function

�̃�(𝑟) def.= 𝑁∑
𝑖=1

𝑞𝑖𝜁(𝑟 − 𝑟𝑖). (ii.50)

As the sum in the 𝜁 function is for all 𝑛, to get the potential at 𝑖 = 𝑗, we have to substract its
own contribution — which will gives the self-energy. This gives us

𝜙(𝑟𝑗) = lim𝑟→𝑟𝑗
(
�̃�(𝑟) − 𝑞𝑗|𝑟 − 𝑟𝑗|

)

= ∑
1≤𝑖≤𝑁𝑛≠0

𝑞𝑖 erfc(𝛼
1/2|𝑟𝑗𝑖𝑛|)|𝑟𝑗𝑖𝑛| + ∑

1≤𝑖≤𝑁𝑖≠𝑗
𝑞𝑖 erfc(𝛼

1/2|𝑟𝑗𝑖|)|𝑟𝑗𝑖| − lim𝑟→𝑟𝑗
(
𝑞𝑗 erf(𝛼

1/2|𝑟 − 𝑟𝑗|)|𝑟 − 𝑟𝑗|
)

+ 1𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 exp(−2𝑖𝜋𝑚 ⋅ 𝑟𝑗)𝑆(𝑚)
+ ∑

1≤𝑖≤𝑁
𝑞𝑖 𝜋𝛼𝑉 + 1𝜋

∑
1≤𝑖≤𝑁

𝑞𝑖𝐻𝑃,𝐾(𝑟 − 𝑟𝑖) + ∑
1≤𝑖≤𝑁

𝑞𝑖𝜀2,𝑟𝑗𝑖(𝛼, 𝐾).

(ii.51)

As we assume the primitive unit cell to be neutral, the fifth term in the previous equation is null
and there is a simplification on the last, which means that we can rewrite the previous quantity
as

𝜙(𝑟𝑗) =∑′
1≤𝑖≤𝑁𝑛

𝑞𝑖 erfc(𝛼
1/2|𝑟𝑗𝑖𝑛|)|𝑟𝑗𝑖𝑛| − 2𝑞𝑗

(𝛼𝜋
)1/2 + 1𝜋𝑉

∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 exp(−2𝑖𝜋𝑚 ⋅ 𝑟𝑗)𝑆(𝑚)

+ ∑
𝑛∈Ω(𝑃,𝐾)1≤𝑖≤𝑁

𝑞𝑖∫𝑈∗
2𝑖𝑣 ⋅ 𝑟𝑖 − 2𝜋(𝑣 ⋅ (𝑟𝑗 − 𝑟𝑖))2|𝑣|2 exp(−2𝑖𝜋𝑣 ⋅ 𝑛)d3𝑣 + ∑

1≤𝑖≤𝑁
𝑞𝑖𝜀2,𝑟𝑗𝑖(𝛼, 𝐾). (ii.52)

Finally, we notice that

𝐶 def.= ∑
1≤𝑖,𝑗≤𝑁

𝑞𝑖𝑞𝑗(𝑣 ⋅ 𝑟𝑗 − 𝑣 ⋅ 𝑟𝑖)2 = 2 ∑
1≤𝑖≤𝑁

𝑞𝑖 ∑
1≤𝑗≤𝑁

𝑞𝑗(𝑣 ⋅ 𝑟𝑗)2 − 2(𝑣 ⋅ D)2
= − 2(𝑣 ⋅ D)2,

(ii.53)

and the theorem is proven, taking

𝜀 ≔ ∑
1≤𝑖,𝑗≤𝑁

𝑞𝑖𝑞𝑗𝜀2,𝑣𝑗𝑖. (ii.54)◼
This proof also gives a sound derivation of the surface term which takes into account the

geometry of the unit cell and the order of summation. It is defined as follow.

Notation (Surface term).— In the following, we use if it exists, 𝐽(D, 𝑃) the limit
𝐽(D, 𝑃) ≔ lim𝐾→+∞ 𝐽(D, 𝑃, 𝐾). (ii.55)

43



Chapter ii Polarisable classical molecular dynamics

It is called the surface term.
As we have already observed, the electrostatic energy is unambiguously defined when the sums

are absolutely convergent, which can be seen by the cancellation of the surface term when the
dipolar moment is null. When this is not the case, it is possible to cancel the surface term by
considering that the system is embedded in a medium of infinite vacuum permittivity, the tinfoil
model. This method, evoked in the article of de Leeuw et al. [dLee+80], and is developed in
Section ii.d.1.

In Fig. ii.4, we show different summations, that impact the computations of the surface term.
In particular, we should not confuse spherical summation with spherical truncation.

(a) Square summation
with 𝑁 = 5 (b) Spherical summation

with 𝑁 = 52 corresponding to
the domain Ω(B3, 5)

(c) Spherical truncation with𝑅 = 5 boxes

Figure ii.4: Different methods of summation. We only sum particles inside the orange domain.

As we can observe in Eq. (ii.26), there is no restriction for the choice of Ewald coefficient 𝛼.
The bigger it is, the more terms of the reciprocal series have to be computed for a given precision.
The optimum coefficients highly depend on the size and the homogeneity of the system that we
consider. For instance, Saunders et al. [Sau+92] have obtained good results with 𝛼 = 28/𝑉2/3.
An interesting case is due to Perram, Petersen, and De Leeuw [PPD88], where they have
shown that by chosing an adequate 𝛼, they were able to decrease the computational complexity
for the computation of the energy to 𝑁3/2.

We insist on the fact that an optimal coefficient is highly dependent on the system we look at
and some considerations are purely empirical. For a detailed discussion on the subject, we refer
to the article from Kolafa and Perram [KP92].

In practice, for molecular dynamics of molecular systems, the Ewald coefficient is often chosen
to respect the minimum image convention. That is to only have to compute interactions between
particles that are at a distance smaller than the length of the unit cell.

By using a neighbour list that is updated at each step in a molecular dynamics, this enables
the computation of the direct sum to have a linear computational complexity in the numbers of
particles of the primitive unit cell.

In the following section, we will look at methods that decrease the computational cost for the
reciprocal sum, using fast Fourier transforms.

II.C Efficient evaluation of reciprocal sum

We present three different methods to compute the reciprocal sum with algorithms of computa-
tional complexity in 𝑁 log(𝑁), where 𝑁 is the number of particles in a primitive unit cell. All the
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ii.c Efficient evaluation of reciprocal sum

methods build on fast Fourier transforms, where either the potential or the density is split.
Those methods use a mesh of the primitive unit cell of size which depends mostly on its

density. Hence to be more accurate, in three dimensions, the computational complexity is
in 𝐾1𝐾2𝐾3 log(𝐾1𝐾2𝐾3), where 𝐾𝑖, for 𝑖 ∈ {1, 2, 3} is the inverse of the length of the mesh in each
direction of primitive vectors. At constant particles density, the more atoms there are in a unit
cell, the thinner the mesh has to be to have comparable accuracy.

In molecular simulations, the size of the mesh is often chosen around 1 ångström, which
empirically gives a density of less than one atom per cube of the mesh. We refer to Fig. ii.5 for
an extrapolation of the mesh size based on this observation.

101 103 105 107 109 1011 1013
21

24

27

210

213

atoms

m
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h
siz

e

𝐾

Figure ii.5: Extrapolation of the mesh size for a density of 0.91 atom/Å3

Under those conditions, for one billion particles, we would need a mesh of 10243, which is
easily accessible on personal computers. This nice property comes from the smoothness of the
reciprocal sum, which enables the use of a coarse mesh to accurately compute it with fast Fourier
transforms.

At the heart of all those methods is work from Eastwood, Hockney, and Lawrence [EHL79]
in the 1970s and 1980s, which we briefly describe in the next section.

II.C.1 Particle-particle–particle-mesh

The particle-particle–particle-mesh method, published in 1979 by Eastwood, Hockney, and
Lawrence [EHL79] is one of the first to try to approximate the full electrostatic potential from a
density of charges, and not to rely on a cutoff of the electrostatic potential energy. The method is
extensively described in the book of Hockney and Eastwood [HE88].

Themethod improves on the particle-meshmethod of Hockney, Goel, and Eastwood [HGE73],
which consists in computing the electrostatic energy at the nodes of a mesh for particles. Hence,
to be able to accurately compute close interactions, a fine mesh has to be used, as only the
variations bigger than the size of the mesh can be well described.

With particle-particle–particle-mesh, the energy of close charges is computed exactly. As in the
case for the Ewald’s summation method, a function has to be chosen to split the potential. In
their work, Eastwood, Hockney, and Lawrence use a function that corresponds to a continuous
potential with compact support in a sphere.

Other functions are mentioned, although no derivation is done, such as a uniformly charged
sphere and another that we used for the Ewald’s summation method we presented: the Gaussian
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Chapter ii Polarisable classical molecular dynamics

density. According to Pollock and Glosli [PG96], those different functions do not seem to have
advantage over each other.

The sketch of the method is to (i) assign charges to grid points from the density; (ii) solve the
Poisson equation at the nodes of the grid; (iii) compute the forces at the nodes; (iv) interpolate
back the forces at the particles positions.

II.C.2 Interpolation of the energy

Figure ii.6: Schematics for the interpolation in two dimensions on four points. The charge is in
red, and the interpolated points are shown in blue.

The most commonly used method in chemistry for molecular dynamics simulations of molecular
systems is the smooth particle mesh Ewald [Ess+95], that we will describe in details below. It is
easy to implement and provides by default energy conservation, which may explain why it is
often the method of reference.

The method builds on the particle mesh Ewald [DYP93] method from the same authors, which
as we will see in the following section had some limitations that had to be addressed for molecular
dynamics.

The main difference between the methods presented in this section is that while the particle-
particle–particle-mesh interpolates the forces, the particle mesh Ewald and smooth particle mesh
Ewald methods interpolate the energy.

Particle mesh EWALD

The particle mesh Ewald method proposed by Darden, York, and Pedersen [DYP93] in 1993,
uses the same idea of particle-particle–particle-mesh to use a grid and perform fast Fourier
transforms on it.

The Lagrange interpolation method is applied to the exponential function. After some
manipulations, we can reformulate the reciprocal sum to obtain discrete Fourier transforms to
be able to quickly compute the structure factor, which is the costly term to evaluate.

Proposition ii.c.1 (Particle mesh Ewald).— There is a smooth by parts function 𝑄 and
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ii.c Efficient evaluation of reciprocal sum

a smooth function 𝜓𝑟 such that

ℰ𝑟(𝐾) = 12
𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

𝑄(𝑚) ⋅ (𝜓𝑟 ∗ 𝑄)(𝑚) + 𝜀(𝐾), (iii.1)

where 𝜀(𝐾) ⟶𝐾→+∞ 0.

Proof: First, we look at the interpolation of the exponential in the one-dimensional case.
Let 𝐾 be a strictly positive integer and 𝑟 ∈ R. We will do the interpolation at the nodes of a

grid of constant length 1/𝐾. Let (ℓ𝑘𝑝,𝐾)𝑘=0,…,2𝑝−1 be the Lagrange interpolation polynomials of
order 2𝑝 associated to the points ( 0𝐾,… , 2𝑝 − 1𝐾

) , (iii.2)

with the convention that ℓ𝑘𝑝,𝐾 ≡ 0 if 𝑘 < 0 or 𝑘 ≥ 2𝑝.
Introducing 𝑘𝑝,𝐾(𝑟) def.= ⌊𝐾𝑟⌋ − 𝑝 + 1, then for any 𝑘 ∈ Z we denote

𝜃𝑝,𝐾(𝑟, 𝑘) def.= ℓ𝑘−𝑘𝑝,𝐾(𝑟)𝑝,𝐾
(
𝑟 − 𝑘𝑝,𝐾(𝑟)𝐾

)
. (iii.3)

This corresponds to doing an interpolation at the (𝑝 − 1)-points of the grids before the point 𝑟
and at the 𝑝 + 1 next, by translating the Lagrangian interpolants.

So there is a function 𝜀𝑝,𝑚(𝐾) = 𝑜(1) such that for all 𝑚, 𝑟 ∈ R,

exp(2𝑖𝜋𝑚𝑟) = ∑
𝑘∈Z

𝜃𝑝,𝐾(𝑟, 𝑘) exp
(2𝑖𝜋𝑚 𝑘𝐾

) + 𝜀𝑝,𝑚(𝐾). (iii.4)

For the error estimates of the method, we refer to the article of Darden [Dar08].
Hence, in three dimensions, with (𝐾1, 𝐾2, 𝐾3) ∈ N3 ∖ {0}, we have

𝑆(𝑚) = ∑
1≤𝑗≤𝑁

𝑞𝑗 exp(2𝑖𝜋𝑚 ⋅ 𝑟𝑗) = ∑
1≤𝑗≤𝑁𝑘1,𝑘2,𝑘3∈Z

𝑞𝑗 ∏
1≤𝛾≤3

𝜃𝑝,𝐾𝛾(𝑠𝑗𝛾, 𝑘𝛾) exp
(
2𝑖𝜋𝑚𝛾

𝑘𝛾𝐾𝛾
)
+ 𝑜(𝐾)

= 𝐾1−1∑
𝑘1=0

𝐾2−1∑
𝑘2=0

𝐾3−1∑
𝑘3=0

𝑄(𝑘1, 𝑘2, 𝑘3) ∏
1≤𝛾≤3

exp
(
2𝑖𝜋𝑚𝛾

𝑘𝛾𝐾𝛾
)
+ 𝑜(𝐾)

= ℱ𝑑(𝑄)(𝑚1, 𝑚2, 𝑚3) + 𝑜(𝐾),

(iii.5)

where ℱ𝑑(𝑄) is the discrete Fourier transform of

𝑄(𝑘1, 𝑘2, 𝑘3) ≔ ∑
1≤𝑗≤𝑁𝑛1,𝑛2,𝑛3∈Z

𝑞𝑗 ∏
1≤𝛾≤3

𝜃𝑝,𝐾𝛾(𝑠𝑗𝛾, 𝑘𝛾 + 𝑛𝛾𝐾𝛾). (iii.6)

Hence, denoting

𝜓𝑟(𝑛1, 𝑛2, 𝑛3) def.= 1𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 exp
(2𝑖𝜋 (𝑚1𝑛1𝐾1 + 𝑚2𝑛2𝐾2 + 𝑚3𝑛3𝐾3

)) , (iii.7)
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and because (in one dimension to simplify) for all 𝑚 ∈ R

ℱ−1𝑑 (𝜓𝑟)(𝑚) = 1𝐾
𝐾−1∑
𝑛=0

𝜓𝑟(𝑛) exp
(−2𝑖𝜋𝑚𝑛𝐾

) = 1𝐾
𝐾−1∑
𝑛=0

1𝜋𝑉
∑
𝑞≠0

𝑒−𝜋2𝑞2/𝛼
𝑞2 exp

(−2𝑖𝜋(𝑚 − 𝑞) 𝑛𝐾
)

= 1𝜋𝑉
∑
𝑞≠0

exp(−𝜋2𝑞2/𝛼)𝑞2 𝛿𝑚(𝑞 mod 𝐾)

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1𝜋𝑉
∑
𝑛∈Z

exp(−𝜋2(𝑚 + 𝑛𝐾)2/𝛼)(𝑚 + 𝑛𝐾)2 if 𝑚 ≠ 0
1𝜋𝑉

∑
𝑛∈Z∗

exp(−𝜋2(𝑛𝐾)2/𝛼)(𝑛𝐾)2 else
,

(iii.8)

we have

ℰ𝑟(𝐾) ≈ 12𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 ℱ𝑑(𝑄)(𝑚1, 𝑚2, 𝑚3)ℱ𝑑(𝑄)(−𝑚1, −𝑚2, −𝑚3) + 𝜀(𝐾) (iii.9a)

= 12
𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

ℱ−1𝑑 (𝜓𝑟)(𝑚1, 𝑚2, 𝑚3)ℱ𝑑(𝑄)(𝑚1, 𝑚2, 𝑚3)ℱ−1𝑑 (𝑄)(𝑚1, 𝑚2, 𝑚3)
× ℱ𝑑(𝑄)(𝑚1, 𝑚2, 𝑚3)𝐾1𝐾2𝐾3ℱ−1𝑑 (𝑄)(𝑚1, 𝑚2, 𝑚3 + 𝜀(𝐾))

(iii.9b)

= 𝐾1𝐾2𝐾32
𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

𝑄(𝑚1, 𝑚2, 𝑚3)ℱ𝑑 (ℱ−1𝑑 (𝜓𝑟 ⋅ ℱ−1𝑑 (𝑄))) (𝑚1, 𝑚2, 𝑚2) + 𝜀(𝐾). (iii.9c)

Hence, we have the property. ◼
Due to the use of Lagrange interpolation, the function 𝑄 is continuous and only regular by

parts, which is not enough to be able to have accurate molecular dynamics. Thus, we have to
interpolate the forces on their own, which means that we cannot have the energy conservation
property.

However, the symmetry in the interpolation means that we do verify the second law of Newton
to machine precision. That is for our isolated system

∑
𝑖

∑
𝑗

F𝑗→𝑖 = ∑
𝑖

𝑚𝑖d
2𝑟𝑖
d𝑡2 = 0. (iii.10)

By using fast Fourier transform to compute Eq. (iii.9a), we have a method of 𝒪(𝑁 log𝑁)
computational complexity. Indeed, as 𝑄 is a real valued function, we have

ℰ𝑟(𝐾) = 12𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 |ℱ𝑑(𝑄)|2(𝑚) + 𝜀(𝐾). (iii.11)

The convergence of this series is quick with respect to 𝑚 and we can truncate it to approximate
the reciprocal energy.

The energy is written as in Proposition ii.c.1, so the formula can be used again for the
computations of the forces. Indeed, the 𝜓𝑟 function does not depend on the positions of the
particles and so the derivative of the convolution product with respect to the atoms positions is
zero and the only difference between the computation of the energy and the forces will be in the
expression of the function 𝑄.

In Fig. ii.7 we give a schematic representation of the interpolation scheme presented here,
which explains graphically why the functions 𝜃𝑝,𝐾 are in general only continuous.
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Figure ii.7: Graphical explanation of the interpolation scheme for particle mesh Ewald. The dots

in red are the values to interpolate.
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Smooth particle mesh EWALD

The smooth particle mesh Ewald method from Essmann et al. [Ess+95] improves on the particle
mesh Ewald. It is a more regular interpolation of the exponential at the nodes of the grid
(see Fig. ii.7c) using B-splines — linear combination of regular polynomials. This enables the
direct derivation of the reciprocal energy formulation, an important condition to have accurate
molecular dynamics.

Proposition ii.c.2 (Smooth particle mesh Ewald).— For any 𝑛 ∈ N, there exists
a 𝑛 − 2-times derivable function 𝑄, a smooth function 𝜃𝑟 such that

ℰ𝑟(𝐾) = 12
𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

𝑄(𝑚) ⋅ (𝜃𝑟 ∗ 𝑄)(𝑚) + 𝜀(𝐾), (iii.12)

where 𝜀(𝐾) ⟶𝐾→+∞ 0.

Proof: To have regular functions 𝜃𝑝,𝐾 in 𝑟 we will interpolate the exponential function with a
linear combination of regular polynomials functions, the B-splines.

We use the same notation as in Proposition ii.c.1. For any integer 𝑛 ≥ 2, we can approximate
the 1D exponential function with

exp (2𝑖𝜋𝑚𝑟) = 𝑏(𝑚)∑
𝑘∈Z

𝐵𝑛𝑘 (𝑟) exp
(2𝑖𝜋𝑚 𝑘𝐾

) + 𝑜(1), (iii.13)

where
𝑏(𝑚) ≔ exp(2𝑖𝜋𝑚(𝑛 − 1)/𝐾)∑

0≤𝑘≤𝑛−2 𝐵𝑛0(𝑘 + 1) exp(2𝑖𝜋𝑚𝑘/𝐾) , (iii.14)

and where the 𝐵𝑛𝑗 are (𝑛 − 2)-times derivable functions with compact support in [0 ; 𝑛].
We can approximate the structure factor with

𝑆(𝑚) ≈ ∏
1≤𝛾≤3

𝑏(𝑚𝛾)ℱ𝑑(𝑄)(𝑚), (iii.15)

where 𝑄(𝑘) ≔ ∑
1≤𝑗≤𝑁𝑛∈Z3

𝑞𝑗 ∏
1≤𝛾≤3

𝐵𝑛𝑘𝛾+𝑛𝛾𝐾𝛾(𝑠𝑗𝛾). (iii.16)

If we define 𝐵(𝑚) def.= ∏
1≤𝛾≤3

|𝑏(𝑚𝛾)|2, (iii.17)

then

ℰ𝑟(𝐾) = 12𝜋𝑉
∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 𝐵(𝑚) ⋅ ℱ𝑑(𝑄)(𝑚) ⋅ ℱ𝑑(𝑄)(−𝑚) + 𝜀(𝐾)
= 12

𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

𝑄(𝑚) ⋅ (𝜃rec ∗ 𝑄) (𝑚) + 𝜀(𝐾),
(iii.18)

where 𝜃rec = ℱ𝑑 (𝐵 ⋅ ℱ−1𝑑 (𝜓rec)) . (iii.19)◼
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Due to the regularity of the function 𝑄, we can immediately derive the forces from Eq. (iii.12),
by noticing that the 𝜃rec functions do not depend on the positions of the particles

F𝑖 = −∇𝑖ℰ𝑟 = 12
𝐾1−1∑
𝑚1=0

𝐾2−1∑
𝑚2=0

𝐾3−1∑
𝑚3=0

∇𝑖𝑄(𝑚) ⋅ (𝜃𝑟 ∗ 𝑄)(𝑚) + ̃𝜀(𝐾). (iii.20)

This means that we can now have energy conservation up to machine precision during molecular
dynamics. However, this comes at the cost of losing the symmetry property during the computation
of the forces, hence the second law of Newton is not satisfied. The centre of gravity of the system
is thus moving from a random quantity of the order of magnitude the error on the computations
of the forces. To prevent this phenomenon, it may be necessary during a molecular dynamics to
shift, at least for some time-steps, the forces [Ess+95].

In the case of higher order multipoles, for example when using the amoeba force field that
requires multipoles up to quadrupoles, we also need higher derivatives of the energy function.
However, as it consists only in using a new 𝑄 function, this does not increase the computational
complexity of the method.

II.C.3 Splitting of the density

In 1994, York and Yang [YY94] presented an alternative to particle mesh Ewald, the fast
Fourier–Poisson. Their idea was to split the density, which leads to an integral where the terms
can be approximated directly on a grid adapted for the fast Fourier transform. This bypass the
need for interpolation.

We recall that Ewald’s clever idea was to mask the point charge potential 𝜙 by the one due to
a Gaussian charge, giving two terms 𝜙𝑑 and 𝜙𝑟, which leads to two absolute convergent sums. In
this method, it is the density that is split using the equality for any 𝑟 ∈ R3

𝜌(𝑟) = (𝜌(𝑟) − 𝜌𝑔(𝑟)) + 𝜌𝑔(𝑟). (iii.21)

Proposition ii.c.3 (Fast Fourier–Poisson).— The energy of a periodic system 𝑟{𝑁}̲ is

ℰ(𝑟{𝑁}̲ ) = 12
∑′
𝑛

∑
1≤𝑖,𝑗≤𝑁

𝑞𝑖𝑞𝑗 erfc(𝛼
1/2|𝑟𝑗𝑖𝑛|/√2)|𝑟𝑗𝑖𝑛| − (𝛼𝜋

)1/2 𝑁∑
𝑗=1

𝑞2𝑗
− 12 ∫

R3
𝜌𝑔(𝑟 ′)𝜙𝑔(𝑟 ′)d3𝑟 ′ + 𝐽(D, 𝑃). (iii.22)

Proof: We can rewrite the reciprocal energy ℰ𝑟 under an integral form

ℰ𝑟 = 12 ∫
R3

𝜌(𝑟 ′)𝜙𝑔(𝑟 ′)d𝑟 ′ = 12 ∫
R3

(𝜌(𝑟 ′) − 𝜌𝑔(𝑟 ′))𝜙𝑔(𝑟 ′) + 𝜌𝑔(𝑟 ′)𝜙𝑔(𝑟 ′)d3𝑟 ′, (iii.23)

and 𝐼 as
𝐼 def.= ∫

R3
(𝜌(𝑟 ′) − 𝜌𝑔(𝑟 ′)) 𝜙𝑔(𝑟 ′)d3𝑟 ′

= 1𝜋𝑉
∑

1≤𝑖,𝑗≤𝑁𝑚≠0
𝑞𝑖𝑞𝑗 𝑒−𝜋

2|𝑚|2/𝛼
|𝑚|2 𝑒−2𝑖𝜋𝑚⋅𝑟𝑖 ∫

R3

(
𝛿(𝑟 ′ − 𝑟𝑗) −

(𝛼𝜋
)3/2 𝑒−𝛼|𝑟′−𝑟𝑗|2

)
𝑒2𝑖𝜋𝑚⋅𝑟′ d3𝑟 ′

= 1𝜋𝑉
∑

1≤𝑖,𝑗≤𝑁𝑚≠0
𝑞𝑖𝑞𝑗 𝑒−𝜋

2|𝑚|2/𝛼
|𝑚|2 𝑒2𝑖𝜋𝑚⋅𝑟𝑗𝑖 ∫

R3

(
𝛿(𝑟 ′) − (𝛼𝜋

)3/2 𝑒−𝛼|𝑟′|2
)
𝑒2𝑖𝜋𝑚⋅𝑟′ d3𝑟 ′.

(iii.24)
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We notice in the integral 𝐼 a difference betweenℱ−1(𝛿) = 1 (iii.25)
and ℱ−1

(
𝑟 ↦ (𝛼𝜋

)3/2 𝑒−𝛼|𝑟|2
)
= 𝑒−𝜋2|𝑚|2/𝛼. (iii.26)

Hence, we obtain

𝐼 = ∑
1≤𝑖,𝑗≤𝑁𝑚≠0

𝑞𝑖𝑞𝑗𝜋𝑉
(𝑒−𝜋2|𝑚|2/𝛼

|𝑚|2 − 𝑒−2𝜋2|𝑚|2/𝛼
|𝑚|2

)
𝑒2𝑖𝜋𝑚⋅𝑟𝑗𝑖

=∑′
1≤𝑖,𝑗≤𝑁𝑛

𝑞𝑖𝑞𝑗
⎛⎜⎜⎜⎜⎜⎜⎝erf(𝛼

1/2|𝑟𝑗𝑖𝑛|)|𝑟𝑗𝑖𝑛| − erf(𝛼1/2|𝑟𝑗𝑖𝑛|/√2)𝑟𝑗𝑖𝑛
⎞⎟⎟⎟⎟⎟⎠ ,

(iii.27)

which concludes the proof. ◼
To compute the force, we have to differentiate the potential energy with respect to 𝑟𝑖

F𝑖 = −∇𝑖ℰ(𝑟{𝑁}̲ ). (iii.28)
With a straightforward computation, we have ∇𝑖∇𝑖𝜙𝑔 = 4𝜋𝜌𝑖𝑔. Thus, using Theorem ii.b.3, we

have

∇𝑖
(∫

R3
𝜌𝑔𝜙𝑔

)
= ∇𝑖

( 14𝜋 ∫
R3

−∆𝜙𝑔𝜙𝑔
)
= ∇𝑖

( 14𝜋 ∫
R3

∇𝜙𝑔∇𝜙𝑔
)
= 12𝜋 ∫

R3
∇𝑖∇𝜙𝑔∇𝜙𝑔

= 2∫
R3

𝜌𝑖𝑔∇𝜙𝑔.
(iii.29)

Finally, we have

F𝑖𝑞𝑖 = −∑′
𝑛

𝑁∑
𝑗=1

𝑞𝑗
⎛⎜⎜⎜⎜⎜⎜⎜⎝
(2𝛼𝜋

)1/2 exp(−𝛼|𝑟𝑗𝑖𝑛|2/2)|𝑟𝑗𝑖𝑛| − erf
(𝛼1/2|𝑟𝑗𝑖𝑛|/√2)

|𝑟𝑗𝑖𝑛|2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ⋅ 𝑒𝑗𝑖𝑛

−∫
R3

𝜌𝑖𝑔(𝑟 ′)∇𝜙𝑔(𝑟 ′)d3𝑟 ′ − ∇𝑖𝐽(D, 𝑃). (iii.30)

Knowing 𝜌𝑔 and 𝜙𝑔 and its gradient at the nodes of the grid, we can evaluate the integrals for
the force and the energy by using a fast Fourier transform from the equation

∫
R3

𝜌𝑔(𝑟)𝜙𝑔(𝑟)d3𝑟 = ∫
R3
ℱ(𝜌𝑔)(−𝑢) ⋅ ℱ(𝜙𝑔)(𝑢)d3𝑢. (iii.31)

II.C.4 particle mesh EWALD and particle-particle–particle-mesh

In 1999, Sagui and Darden [SD99] have shown that the particle mesh Ewald method could be
modified to recover the particle-particle–particle-mesh method. In fact, with particle-particle–
particle-mesh, Eastwood, Hockney, and Lawrence were interested in interpolating the charges
on a grid in a way that would minimise the error on the forces. With particle mesh Ewald,
Darden, York, and Pedersen only cared about interpolating the charges for the computation of
the energy. In doing so, the error on the energy is minimised. But by changing the interpolation
function, Sagui and Darden were able to link the two methods.

The reverse has been done by Ballenegger et al. [Bal+08] to modify the particle-particle–
particle-mesh method to minimise the error on the energy rather than on the forces. Moreover,
it has been shown in [BCH12] that it was possible to transform the error estimates of particle-
particle–particle-mesh into the ones of particle mesh Ewald and vice-versa.
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II.D Generalisations for the AMOEBA force field

What we have presented so far cannot be used for the amoeba force field. Indeed, we have still
left unresolved the computation of the surface term, and we have not introduced the Ewald’s
summation method in the case where we have point multipoles and not only point charges. This
section is here to remedy this.

II.D.1 Surface term

In this section, we will derive some explicit formulæ for the surface term. It should be remembered
that the results continue to depend on the shape of the primitive unit cell; which is still assumed
to be a cubic one.

Shape of the lattice

First, we give the expression of the surface term in some common cases. We will use results from
de Leeuw et al. [dLee+80], Smith [Smi81], and van Eijck and Kroon [vEK97], as well as
notation from Darden [Dar08].

To prove the results, we will need the following classical lemma of Riemann integration.

Lemma ii.d.1.— For any continuous function 𝑓
lim𝐾→+∞

∑
𝑛∈Ω(𝑃,𝐾)

𝑓(𝑛/𝐾)𝐾3 = 1𝑉 ∫
𝑃
𝑓(𝑟)d3𝑟. (iv.1)

Admitted proof: This is a classic property of Riemann integration. □

Theorem ii.d.1.— With the same notation as in Theorem ii.b.6, we have

𝐽(D, 𝑃) = 2𝜋𝑉 ∫
R3

(𝑤 ⋅ D)2|𝑤|2 ∫
𝑃
exp(−2𝑖𝜋𝑤 ⋅ 𝑟)d3𝑟d3𝑤. (iv.2)

Proof: By definition of the surface term and after a change of variables, we have

𝐽(D, 𝑃, 𝐾)2𝜋 =∫
𝐾𝑈∗

(𝑤 ⋅ D)2|𝑤|2
∑

𝑛∈Ω(𝑃,𝐾)
𝑒−2𝑖𝜋𝑤⋅𝑛/𝐾

𝐾3 d3𝑤
=

Lem. ii.d.1
1𝑉 ∫

𝐾𝑈∗
(𝑤 ⋅ D)2|𝑤|2 ∫

𝑃
exp(−2𝑖𝜋𝑤 ⋅ 𝑟)d3𝑟d3𝑤 + 𝜀(𝐾),

(iv.3)

where 𝜀(𝐾) ⟶𝐾→+∞ 0. This concludes the proof. ◼
Corollary ii.d.1.— Let B3 the (compact) unit ball of R3. Then

𝐽(D,B3) = 2𝜋|D|23𝑉 . (iv.4)
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Proof: We can see with a change of variables that the second integral of the previous theorem
is a radial function of 𝑤, hence if we note for any 𝑤 ∈ R3

𝑔(|𝑤|) def.= 𝑞∫
B3

exp(−2𝑖𝜋𝑤 ⋅ 𝑢)d3𝑢, (iv.5)

we find

𝐽(D,B3) = 2𝜋𝑉 ∫
R3

(𝑤 ⋅ D)2|𝑤|2 𝑔(|𝑤|)d3𝑤
= 2𝜋𝑉 ∫𝜋

0
∫2𝜋
0

∫+∞
0

(𝑤 cos(𝜑)𝑀)2𝑤2 𝑔(𝑤)𝑤2 sin(𝜑)d𝑤d𝜃d𝜑,
(iv.6)

if the up axis is taken as parallel to 𝑤. Thus
𝐽(D,B3) = 2𝜋|D|23𝑉 ∫

R3
𝑔(|𝑤|)d3𝑤

=
Fubini

2𝜋|D|23𝑉 ∫
B3
∫
R3

exp(−2𝑖𝜋𝑤 ⋅ 𝑢)d3𝑤d3𝑢. (iv.7)

We have the results by noticing that the integral is equivalent to the Dirac function 𝛿𝑢. ◼
Proposition ii.d.1.— Let 𝑃 a compact of R3 that contains the unit ball B3. Then, we
have

𝐽(D, 𝑃) = 12𝑉 ∫
𝑟∈𝜕𝑃

M1 ⋅ 𝑟|𝑟|3 ∗ D ⋅ d𝜎. (iv.8)

Proof: We can decompose for any 𝐾 > 0ℰ𝑃,𝐾(𝑟{𝑁}̲ ) = ℰB3,𝐾(𝑟{𝑁}̲ ) + ℰ𝑃,𝐾(𝑟{𝑁}̲ ) − ℰB3,𝐾(𝑟{𝑁}̲ ). (iv.9)
Hence, we obtain using Proposition ii.b.2

ℰ𝑃∖B3,𝐾(𝑟{𝑁}̲ ) = 12
∑

𝑛∈Ω(𝑃∖B3)

(|D|2|𝑛|3 − 3(D ⋅ 𝑛)2|𝑛|5
)
+ 𝒪(|𝑛|−4)

=
Lem. ii.d.1

12𝑉 ∫
𝑃∖B3

(|D|2|𝑟|3 − 3(D ⋅ 𝑟)2|𝑟|5
)
d3𝑟 + 𝜀(𝐾) + 𝒪(|𝑛|−4)

=
Thm. ii.b.1

12𝑉 ∫
𝜕(𝑃∖B3)

D ⋅ 𝑟|𝑟|3 D ⋅ 𝑛d𝜎 + 𝜀(𝐾) + 𝒪(|𝑛|−4),
(iv.10)

where 𝜀(𝐾) ⟶𝐾→+∞ 0. Moreover, we have 𝑛 → +∞ when 𝐾 goes to infinity.
And by a simple calculation, we find

12𝑉 ∫
𝜕B3

D ⋅ 𝑟|𝑟|3 D ⋅ 𝑛d𝜎 = 2𝜋|D|23𝑉 = 𝐽(D,B3), (iv.11)

which concludes the proof of the property. ◼
Cancellation of the surface term

In this section we will see that under certain conditions it is possible to have a null surface term.
This happens due to polarisation that emerges if we embed the system in a medium of infinite
permittivity 𝜖.
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Theorem ii.d.2.— Let B3 the unit ball of R3 surrounded by a medium of dielectric
permittivity 𝜖. Then

𝐽𝜖(D,B3) = 2𝜋𝑉 ⋅ |D|22𝜖 + 1. (iv.12)

This result is a generalisation of the equivalent in the previous section, where the dielectric
permittivity was the one of vacuum 𝜖0, which is equal to one. For the proof of this result, we use
the one of Smith [Smi94].

For the proof, we will use the following definition for spherical harmonics.

Definition ii.d.1 (Spherical harmonics).— Let Γ be the set defined as

Γ ≔ {(𝑛,𝑚) ∈ N × Z | −𝑛 ≤ 𝑚 ≤ 𝑛}. (iv.13)

Then we define for any (𝑛,𝑚) ∈ Γ and ̂𝑟 = (𝜃, 𝜑) ∈ S3 such that 𝜃 ∈ [0 ; 𝜋] and 𝜑 ∈ [0 ; 2𝜋[ the
spherical harmonic of order 𝑚 and degree 𝑛 as

𝑌𝑚𝑛 ( ̂𝑟) ≔
√2𝑛 + 14𝜋 (𝑛 − 𝑚)!(𝑛 + 𝑚)!𝑃𝑚𝑛 (cos𝜃) exp(𝑖𝑚𝜑). (iv.14)

We will also denote by 𝑌𝑚∗𝑛 ≔ 𝑌−𝑚𝑛 the conjugate of 𝑌𝑚𝑛 .

Proof of Theorem ii.d.2: Let 𝐾 be a strictly positive scalar. We consider the ball 𝐵 ≔ 𝐾 ⋅ B3,
the ball of radius 𝐾 in R3, which is embedded in a medium of dielectric permittivity 𝜖. We note
that the ball 𝐵 itself has the same dielectric permittivity as vacuum 𝜖0. We refer to Fig. ii.8 for a
representation.

S2

𝐵

𝜂
𝑟𝑗+𝑛

𝜉𝑟
𝛽

Figure ii.8: Ball 𝐵 embedded in a medium with dielectric permittivity 𝜖
We will compute the potential due to polarisation, and conclude by the superposition principle.

The polarisation happens because a charge 𝑞𝑗 polarises the medium outside of the ball 𝐵 of
dielectric permittivity 𝜖, which induces a potential in 𝐵 that acts on all other charges.
We will use spherical harmonics. For any non-zero 𝑟 of R3 and any (ℓ,𝑚) ∈ Z × N such

that −ℓ ≤ 𝑚 ≤ ℓ, we note 𝜙𝑚ℓ (𝑟) def.= |𝑟|ℓ𝑌𝑚ℓ ( ̂𝑟), where ̂𝑟 def.= 𝑟/|𝑟| and the 𝑌𝑚ℓ functions are the
spherical harmonics of order 𝑚 and degree ℓ. Then, the potential at 𝑟 ∈ 𝑈 due to a charge 𝑟𝑗+𝑛 ∈ 𝐵
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is [Smi94]
𝜙𝑗+𝑛(𝑟) = −∑

ℓ∈N|𝑚|≤ℓ

4𝜋2ℓ + 1 (ℓ + 1)(𝜖 − 1)𝜖(ℓ + 1) + ℓ
𝜙𝑚ℓ (𝑟)𝜙𝑚∗ℓ (𝑟𝑗 + 𝑛)

𝐾2ℓ+1 . (iv.15)

Hence, we find that the polarisation potential due to the lattice 𝑟{𝑁}̲ is for any 𝑟 ∈ 𝑈
𝜙B3,𝐾(𝑟) def.= ∑

1≤𝑗≤𝑁𝑛∈Ω(B3,𝐾)
𝑞𝑗𝜙𝑗+𝑛(𝑟) = −∑

𝑙∈N|𝑚|≤𝑙
(−1)𝑚 𝐶ℓ𝐾2𝑙+1

∑
1≤𝑗≤𝑁𝑛∈Ω(B3,𝐾)

𝑞𝑗𝜙𝑚𝑙 (𝑟)𝜙−𝑚𝑙 (𝑟𝑗 + 𝑛)

=𝒬=0 − ∑
𝑙∈N|𝑚|≤𝑙

(−1)𝑚 𝐶ℓ𝐾 𝑙+1𝜙𝑚𝑙 (𝑟) ∑
1≤𝑗≤𝑁𝑛∈Ω(B3,𝐾)

𝑞𝑗
(𝜙−𝑚𝑙

(𝑟𝑗 + 𝑛
𝐾

) − 𝜙−𝑚𝑙
( 𝑛𝐾

))

=
Lem. ii.d.1

− ∑
𝑙∈N|𝑚|≤𝑙

(−1)𝑚 𝐶ℓ𝐾 𝑙−1𝜙𝑚𝑙 (𝑟) ∑
1≤𝑗≤𝑁

𝐾𝑉 ∫
B3

(𝜙−𝑚𝑙
( 𝑟𝑗𝐾 + 𝑟) − 𝜙−𝑚𝑙 (𝑟))d3𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≕ 𝐼

,
(iv.16)

where 𝐶ℓ are the first two fractions in the previous sum of Eq. (iv.15)
Moreover, a Taylor expansion gives us that

𝑉 ⋅ 𝐼 = 𝑟𝑗 ⋅ ∫
B3
∇𝜙−𝑚ℓ (𝑟) + 𝒪(𝐾−1)d3𝑟. (iv.17)

Thus, we have the equality

𝜙B3,𝐾(𝑟) = − 1𝑉
∑
ℓ∈N|𝑚|≤ℓ

(−1)𝑚 𝐶ℓ𝐾ℓ−1𝜙𝑚ℓ (𝑟)D ⋅ ∫
B3
∇𝜙−𝑚ℓ (𝑟 ′)d3𝑟 ′ + 𝜀(𝐾), (iv.18)

where 𝜀(𝐾) ⟶𝐾→+∞ 0.
As we want the behaviour when 𝐾 goes to infinity, only the case when ℓ = 0 or 1 is unclear. To

study this, we introduce the spherical basis, which is such that

𝑒−1 def.= 1√2(1, 𝑖, 0) 𝑒0 def.= (0, 0, 1) 𝑒1 def.= − 1√2(1, −𝑖, 0) (iv.19)

in the canonical basis. We remark that we have 𝑒∗𝑚 = 𝑒−𝑚.
Then, we have

∫
B3
∇𝜙−𝑚ℓ (𝑟 ′)d3𝑟 ′ =

√4𝜋3 δℓ1 𝑒∗𝑚. (iv.20)

Moreover, a direct calculation gives

𝜙B3,𝐾 = 4𝜋3 ⋅ 2(𝜖 − 1)2𝜖 + 1 ⋅
√4𝜋3 D ⋅ |𝑟| (−𝑌−11 ( ̂𝑟)𝑒−1 + 𝑌00( ̂𝑟)𝑒0 − 𝑌11( ̂𝑟)𝑒1) + 𝜀(𝐾)

= 4𝜋3 ⋅ 2(𝜖 − 1)2𝜖 + 1 D ⋅ |𝑟| ̂𝑟 + 𝑜𝐾(1).
(iv.21)

So, for the lattice 𝑟{𝑁}̲ , we have

𝜙𝑆(𝑟𝑗) def.= lim𝐾→+∞𝜙B3,𝐾(𝑟𝑗) = −4𝜋3𝑉 ⋅ 2(𝜖 − 1)2𝜖 + 1 𝑞𝑗𝑟 ⋅ D. (iv.22)
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Thus, the polarisation energy is
12

∑
1≤𝑗≤𝑁

𝑞𝑗𝜙𝑆(𝑟𝑗) = −4𝜋3𝑉 ⋅ 𝜖 − 12𝜖 + 1|D|2. (iv.23)

Finally, because 2𝜋|D|23𝑉 − 4𝜋3𝑉 ⋅ 𝜖 − 12𝜖 + 1|D|2 = 2𝜋𝑉 ⋅ |D|22𝜖 + 1, (iv.24)
we deduce the result. ◼

This result implies that the surface term disappears in the limit where 𝜖 goes to infinity. This
is — often implicitly — the case in which we consider periodic systems in molecular dynamics.
This enables the absolute convergence of the series, and hence we do not have to worry about
the order of summation.

II.D.2 Generalised EWALD’s summationmethod for multipoles

Up to now, we have neglected all interactions other than point charges. It is thus impossible to pre-
cisely model some interactions that are best described with multipoles up to quadrupoles [WR84].
In particular, using only the previous results, it would not be possible to implement the amoeba
force field [PC03].

The development that we describe here is due to a 1982 paper that was reedited in 1998
by [Smi98]. We will explain how to obtain the energy ℰ(𝑟{𝑁}̲ ) as Ewald’s sums up to quadrupoles.
The method has been applied by Sagui, Pedersen, and Darden [SPD04] in 2004 for the smooth
particle mesh Ewald method. The development here is done for Cartesian coordinates. We refer
to the work of Simmonett et al. [Sim+14] for the Ewald’s summation method using spherical
harmonics.

First, we rewrite the energy ℰ(𝑟{𝑁}̲ ) to take into account multipolar moments up to order 𝑝.
Definition ii.d.2.— Let 𝑝 ∈ N be the maximum order of multipoles that we consider. Then,
for 𝑖 ∈ ⟦1 . . 𝑁⟧we denote by M𝑑𝑖 the 3𝑑 tensor representing the 2𝑑-order multipole at position 𝑟𝑖.
We call multipolar operator the quantity

L̂𝑖 ≔ ∑
0≤𝑑≤𝑝

M𝑑𝑖 ⋅ D𝑑𝑖 , (iv.25)

where ⋅ is the point-wise product, and D𝑑𝑖 is the matrix of 𝑑-order partial derivatives with
respect to atomic coordinates 𝑖. We note that we have replaced in this section the notation 𝑞𝑖
by M0𝑖.
The potential 𝜙(𝑟𝑖) at position 𝑟𝑖 is then

𝜙(𝑟𝑖) = ∑
0≤𝑑≤𝑝

(−1)𝑑M𝑑𝑗 ⋅ D𝑑𝑖
( 1|𝑟𝑗𝑖|

)
, (iv.26)

and the associated energy is

ℰ(𝑟{𝑁}̲ ) = 12
∑′
𝑛

∑
1≤𝑖,𝑗≤𝑁

L̂𝑖L̂𝑗
( 1|𝑟𝑗 − 𝑟𝑖 + 𝑛|

)
. (iv.27)

If we consider multipoles up to dipoles, the previous series is explicitly
𝑁∑

𝑖,𝑗=1

(M0𝑖M0𝑗|𝑟𝑗𝑖𝑛| + (M0𝑗M1𝑖 −M0𝑖M1𝑗) ⋅ 𝑟𝑗𝑖𝑛 +M1𝑖 ⋅M1𝑗|𝑟𝑗𝑖𝑛|3 − 3M1𝑗 ⋅ 𝑟𝑗𝑖𝑛M1𝑖 ⋅ 𝑟𝑗𝑖𝑛|𝑟𝑗𝑖𝑛|5
)
, (iv.28)
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With the same notation as for Eq. (ii.20) and by developing the scalar products in the previous
equation we get the asymptotic behaviour for the absolute value of the second term of the series

1|𝑛|3
⎛⎜⎜⎜⎜⎜⎝−2𝒬 ∑

1≤𝑖≤𝑁
𝑟2𝑖 + 𝒬2 + 3|D|2

⎞⎟⎟⎟⎟⎟⎠ , (iv.29)

and in the third term, the only term in 𝑂(|𝑛|−3) is
3(D ⋅ 𝑛)2|𝑛|5 . (iv.30)

We thus have absolute convergence of the infinite sum with the same conditions as for point
charges, that is 𝒬 = 0 and D = 0.

When considering higher order multipoles, it is necessary that the quadrupoles are also zero.
Indeed, in this case we only have terms that decrease as |𝑛|4 which belongs to L1loc(R3). We refer
the reader to articles from Harris [Har75] and Saunders et al. [Sau+92] for discussions on
this case.

We can now introduce the Ewald’s summation method for arbitrary multipoles.

Proposition – Definition ii.d.1.— For any 𝑚 ∈ R3, we denote by

̃𝑆(𝑚) ≔ ∑
1≤𝑗≤𝑁

ℱ(L̂𝑗)(𝑚) exp(2𝑖𝜋𝑚 ⋅ 𝑟𝑗) (iv.31)

the multipolar structure factor. The multipolar electrostatic Ewald energy of the lattice 𝑟{𝑁}̲
is

̃ℰEwald(𝑟{𝑁}̲ ) = 12
∑′

1≤𝑖,𝑗≤𝑁𝑛
L̂𝑖L̂𝑗

(erfc(𝑎1/2|𝑟𝑗𝑖𝑛|)|𝑟𝑗𝑖𝑛|
)
− ℰself + 12𝜋𝑉

∑
𝑚≠0

exp(−𝜋2|𝑚|2/𝛼)|𝑚|2 | ̃𝑆(𝑚)|2,
(iv.32)

where the self-energy ℰself is a term that we will explain in the next section, in particular
in Proposition ii.d.4.

As it is the case for the point charges, the two series of Eq. (iv.32) are absolutely convergent.
The proof is similar to the one for point charges.
Proof: The result is straightforward once we have noticed that for every 𝑚 ∈ R3

ℱ(∇𝑗)(𝑚) = ∫
R3

∇𝑗 exp(−2𝑖𝜋𝑚 ⋅ 𝑟𝑗)d3𝑟𝑗 = −(2𝑖𝜋𝑚)∫
R3

exp(−2𝑖𝜋𝑚 ⋅ 𝑟𝑗)d3𝑟𝑗
= −(2𝑖𝜋𝑚) δ𝑟𝑗(𝑚), (iv.33)

hence ℱ(L̂𝑗)(𝑚) = ∑
0≤𝑑≤𝑝

(2𝑖𝜋)𝑑M𝑑𝑗 ⋅ 𝑚⊗𝑑. (iv.34)

We can then redo the proof of Proposition ii.c.1. ◼
Self-energy term

The self-energy term has two be computed case by case, in the same way that for interaction
between point charges. In this section, we give a proof for its expression for multipoles of arbitrary
order. We are not aware of similar development in the literature.

For the expression of the self-energy, we will need the following results.

58



ii.d Generalisations for amoeba

Proposition ii.d.2.— For any 𝛼 > 0, the function 𝑟 ↦ erf(𝛼1/2𝑟)/𝑟 has the following
power series expansion

erf(𝛼1/2𝑟)𝑟 = 2
√𝛼𝜋

∑
𝑘∈N

(−1)𝑘 𝛼𝑘
(2𝑘 + 1)𝑘!𝑟2𝑘 (iv.35)

on R.

Proof: We can show this using the definition of the error function and expanding the exponential
inside the integral, and then applying Fubini’s theorem. ◼

Lemma ii.d.2.— For any 𝑛 ∈ N, we have the equality
∑
1≤𝑘≤𝑛

(−2)𝑘(2𝑘 + 1)¡ 𝑛!(𝑛 − 𝑘)! = − 2𝑛2𝑛 + 1, (iv.36)

where (2𝑘 + 1)¡ = (2𝑘 + 1) ×⋯ × 3 × 1 and (2𝑘)¡ = (2𝑘) ×⋯ × 2.

Proof: We show the (stronger) result with recursion

∑
1≤𝑘≤𝑛

(−2)𝑘(2𝑘 + 𝜈)¡ 𝑛!(𝑛 − 𝑘)! = − 2𝑛𝜈¡(2𝑛 + 𝜈) , (iv.37)

where 𝜈 is an odd integer. Indeed, the result is clearly true for 𝑛 = 1. At rank 𝑛 + 1, we have

𝑆 def.= ∑
1≤𝑘≤𝑛+1

(−2)𝑘(2𝑘 + 𝜈)¡ (𝑛 + 1)!(𝑛 + 1 − 𝑘)! = (𝑛 + 1) ∑
1≤𝑘≤𝑛

(−2)𝑘+1(2(𝑘 + 1) + 𝜈)¡ 𝑛!(𝑛 − 𝑘)! − 2(𝑛 + 1)(2 + 𝜈)¡
= − 2(𝑛 + 1)

(
− 2𝑛(2 + 𝜈)¡(2(𝑛 + 1) + 𝜈) + 1(2 + 𝜈)¡

)
= − 2(𝑛 + 1)𝜈¡(2(𝑛 + 1) + 𝜈) .

(iv.38)

Hence, the result is verified for 𝑛 + 1. ◼

Lemma ii.d.3.— For any 𝑛 ∈ N, every 𝛼 > 0 and all 𝑟 > 0, we have the identity
𝑛−1∑
𝑘=0

(−1)𝑘𝛼𝑘
𝑘!

⎛⎜⎜⎜⎜⎜⎜⎝ 12𝛼
𝑛−𝑘∑
ℓ=1

(4𝛼)ℓℓ!(2ℓ)! 𝑟2(ℓ−1) − 12𝑘 + 1
⎞⎟⎟⎟⎟⎟⎠ 𝑟2𝑘 = 0. (iv.39)
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Proof: To use the previous lemma, we can rewrite the sum as
𝑛∑

𝑘=0
(−1)𝑘𝛼𝑘

𝑘!
⎛⎜⎜⎜⎜⎜⎜⎝ 12𝛼

𝑛+1−𝑘∑
ℓ=1

(4𝛼)ℓℓ!(2ℓ)! 𝑟2(ℓ−1) − 12𝑘 + 1
⎞⎟⎟⎟⎟⎟⎠ 𝑟2𝑘

= 𝑛−1∑
𝑘=0

(−1)𝑘𝛼𝑘
𝑘!

⎛⎜⎜⎜⎜⎜⎝ 12𝛼
𝑛−𝑘∑
ℓ=1

(4𝛼)ℓℓ!(2ℓ)! 𝑟2(ℓ−1) − 12𝑘 + 1 + 22(𝑛−𝑘)+1𝛼𝑛−𝑘(𝑛 + 1 − 𝑘)!(2(𝑛 + 1 − 𝑘))! 𝑟2(𝑛−𝑘)
⎞⎟⎟⎟⎟⎠𝑟2𝑘

+ (−𝛼)𝑛𝑛! 2𝑛2𝑛 + 1𝑟2𝑛
= (−𝛼)𝑛𝑟2𝑛𝑛!

⎛⎜⎜⎜⎜⎜⎝
𝑛−1∑
𝑘=0

(−1)𝑛−𝑘22(𝑛−𝑘)+1(𝑛 + 1 − 𝑘)!𝑛!𝑘!(2(𝑛 + 1 − 𝑘))! + 2𝑛2𝑛 + 1
⎞⎟⎟⎟⎟⎟⎠ .

(iv.40)

By noticing that for every integer 𝑘 we have

2𝑘𝑘!(2𝑘)! = 1(2𝑘 − 1)¡ , (iv.41)

we can conclude using the previous lemma after a change of index. ◼
With the same method used by Smith [Smi98], we introduce the functions 𝐵𝑛 with values

on R+ defined by the reccurence relations for all (𝑛, 𝑟) ∈ N × R+

𝐵0(𝑟) def.= −erf(𝛼1/2𝑟)𝑟 , 𝐵𝑛(𝑟) def.= 1𝑟2
(
(2𝑛 − 1)𝐵𝑛−1(𝑟) + (2𝛼)𝑛

𝛼1/2√𝜋 exp(−𝛼𝑟2)
)
. (iv.42)

These functions verify for all 𝑛 ∈ N

d𝐵𝑛
d𝑟 (𝑟) = −𝑟𝐵𝑛+1(𝑟), (iv.43)

which implies
D𝑖𝐵𝑛(|𝑟𝑗𝑖𝑛|) = 𝑟𝑗𝑖𝑛𝐵𝑛+1(|𝑟𝑗𝑖𝑛|). (iv.44)

We recall that for point charges, we had to look at the limit

lim𝑟→𝑟𝑗
(
M0𝑗

erf(𝛼1/2|𝑟𝑗 − 𝑟|)
|𝑟𝑗 − 𝑟|

)
, (iv.45)

which corresponds to
lim𝑟𝑖→𝑟𝑗 M0𝑗𝐵0(|𝑟𝑗𝑖0|). (iv.46)

To generalise for any multipoles, we thus have to study the existence of the functions 𝐵𝑛 at the
origin. This is what the following propositions gives.

Proposition ii.d.3.— For every integer 𝑛, the function 𝐵𝑛 is defined on R+ and

lim𝑟→0𝐵𝑛(𝑟) = 𝐵𝑛(0) = −𝛼𝑛+1/2√𝜋
2𝑛+12𝑛 + 1. (iv.47)
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Proof: It is clear that the function 𝐵𝑛 is defined for all 𝑟 > 0. It remains to show the result at
the origin. With a simple recurrence, we show that for every 𝑟 > 0 and all 𝑛 ≥ 1

𝐵𝑛(𝑟) = exp(−𝛼𝑟2)
𝛼1/2√𝜋𝑟2

𝑛−1∑
𝑘=0

(2𝛼)𝑛−𝑘𝑟2𝑘 (2𝑛 − 1)¡(2(𝑛 − 𝑘) − 1)¡ − (2𝑛 − 1)¡erf(𝛼1/2𝑟)𝑟2𝑛+1 . (iv.48)

Thus, using the power series expansion of the error function using Proposition ii.d.2 and of the
exponential, we have that for all 𝑟 > 0
𝐵𝑛(𝑟) = −(2𝑛 − 1)¡2𝛼1/2√𝜋

+∞∑
𝑘=0

(−𝛼)𝑘(2𝑘 + 1)𝑘!𝑟2(𝑘−𝑛)

+ 1
𝛼1/2√𝜋

+∞∑
ℓ=0

𝑛−1∑
𝑘=0

(−1)ℓ2𝑛−𝑘𝛼𝑛+ℓ−𝑘(2𝑛 − 1)¡ℓ!(2(𝑛 − 𝑘) − 1)¡ 𝑟2(ℓ−𝑘−1). (iv.49)

It clearly appears in the latter expression that we have to study the terms for which 𝑘 − 𝑛
and ℓ − 𝑘 − 1 are negatives. Indeed, when strictly positive, these terms goes to zero when 𝑟 goes
to zero.
We begin with introducing Σ and Σ′ defined by

Σ def.= 𝐵𝑛(𝑟)√𝜋2𝛼1/2(2𝑛 − 1)¡
= 𝑛−1∑

𝑘=0

⎛⎜⎜⎜⎜⎜⎜⎝− (−𝛼)𝑘(2𝑘 + 1)𝑘!𝑟2(𝑘−𝑛) +
𝑘∑

𝑙=0
(−1)ℓ22(𝑛−𝑘)−1𝛼𝑛−𝑘+ℓ−1(𝑛 − 𝑘)!ℓ!(2(𝑛 − 𝑘))! 𝑟2(ℓ−𝑘−1)

⎞⎟⎟⎟⎟⎟⎠ .
(iv.50)

With a change of variables, we are have

𝑟2𝑛Σ = 𝑛−1∑
𝑘=0

(−𝛼)𝑘𝑘!
⎛⎜⎜⎜⎜⎜⎜⎝ 12𝛼

𝑛−𝑘∑
ℓ=1

(4𝛼)ℓℓ!(2ℓ)! 𝑟2(ℓ−1) − 12𝑘 + 1
⎞⎟⎟⎟⎟⎟⎠ 𝑟2𝑘, (iv.51)

which is defined at zero by Proposition – Definition ii.d.1, because it is equal to zero.
It remains to study the constant term, that is

Υ def.= 2(2𝑛 − 1)¡
√𝛼𝜋(−𝛼)𝑛

⎛⎜⎜⎜⎜⎜⎝ −1(2𝑛 + 1)𝑛! + 12
𝑛−1∑
𝑘=0

(−1)𝑛−𝑘−122(𝑛−𝑘)(𝑛 − 𝑘)!(𝑘 + 1)!(2(𝑛 − 𝑘))!
⎞⎟⎟⎟⎟⎟⎠ , (iv.52)

which gives after a change of variables

Υ = −2(2𝑛 − 1)¡
√𝛼𝜋(−𝛼)𝑛

⎛⎜⎜⎜⎜⎜⎝ 1(2𝑛 + 1)𝑛! + 12
𝑛∑

𝑘=1
(−4)𝑘𝑘!(𝑛 − 𝑘 + 1)!(2𝑘)!

⎞⎟⎟⎟⎟⎠ . (iv.53)

By recurrence, we then show that
1(2𝑛 + 1) + 12

𝑛∑
𝑘=1

(−4)𝑘𝑘!𝑛!(𝑛 − 𝑘 + 1)!(2𝑘)! = (−4)𝑛𝑛!2(2𝑛 + 1)! . (iv.54)

Indeed, the result is clear at rank 𝑛 = 1, and at rank 𝑛 + 1 we have

𝑆 def.= 12𝑛 + 3 + 12
𝑛+1∑
𝑘=1

(−2)𝑘(𝑛 + 1)!(2𝑘 − 1)¡(𝑛 + 2 − 𝑘)! = 12𝑛 + 3 − 𝑛∑
𝑘=0

(−2)𝑘(𝑛 + 1)!(2𝑘 + 1)¡(𝑛 + 1 − 𝑘)!
= 12𝑛 + 3 − 𝑛+1∑

𝑘=1
(−2)𝑘(𝑛 + 1)!(2𝑘 + 1)¡(𝑛 + 1 − 𝑘)! + (−2)𝑛+1(𝑛 + 1)!(2𝑛 + 3)¡ − 1 =

Lem. ii.d.2
(−2)𝑛+1(𝑛 + 1)!(2𝑛 + 3)¡

= (−4)𝑛+1(𝑛 + 1)!2(2𝑛 + 3)! ,
(iv.55)
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hence the result at rank 𝑛 + 1, and thus for all 𝑛 ≥ 1.
Finally, for every integer 𝑛 strictly positive,

Υ = −𝛼𝑛+1/2√𝜋
2𝑛+12𝑛 + 1. (iv.56)

With the convention (−1)¡ = 1, we notice that when 𝑛 = 0 in the previous expression, we
recover the potential of the self-energy for charges. The formula is thus defined for all 𝑛 ∈ N. ◼

We now have everything that is necessary to have the general expression of the self-energy.

Proposition ii.d.4 (Self-energy).— The self-energy is well defined for any multipole
order. In particular, for interactions up to quadrupoles, we have

ℰself = −
√𝛼𝜋

𝑁∑
𝑗=1

⎛⎜⎜⎜⎜⎜⎝M02𝑗 + 2𝛼3
(|M1𝑗|2 − 2M0𝑗 Tr(M2𝑗)) + 4𝛼2

5
(2M2𝑗 ⋅M2𝑗 + (Tr(M2𝑗))2)

⎞⎟⎟⎟⎟⎠,
(iv.57)

where Tr is the trace operator on matrices.

Proof: To keep the proof simple, we will give the results in the most common setting, when the
matrix of quadrupoles is symmetric with zero trace.

The 𝑗-th self-potential 𝜙self at an arbitrary point 𝑟 in a neighborhood of 𝑟𝑗 writes as

𝜙𝑗
self(𝑟) = −L̂𝑗 erf(𝛼

1/2|𝑟 − 𝑟𝑗|)|𝑟 − 𝑟𝑗| = −L̂𝑗𝐵0(|𝑟 − 𝑟𝑗|)
= −M0𝑗𝐵0(|𝑟 − 𝑟𝑗|) −M1𝑗 ⋅ D1𝑗 𝐵0(|𝑟 − 𝑟𝑗|) −M2𝑗 ⋅ D2𝑗 𝐵0(|𝑟 − 𝑟𝑗|)
= −M0𝑗𝐵0(|𝑟 − 𝑟𝑗|) + 𝐵1(|𝑟 − 𝑟𝑗|)M1𝑗 ⋅ (𝑟 − 𝑟𝑗) − 𝐵2(|𝑟 − 𝑟𝑗|)M2𝑗 ⋅ ((𝑟 − 𝑟𝑗)T(𝑟 − 𝑟𝑗)).

(iv.58)

Then, the evaluation of the self-potential at 𝑟 = 𝑟𝑗 is then given by

𝜙𝑗
self(𝑟𝑗) = lim𝑟→𝑟𝑗 𝜙self(𝑟) = −M0𝑗𝐵0(0) = M0𝑗2𝛼1/2√𝜋 , (iv.59)

which does not depend anymore on 𝑟𝑗, only depends on the charge M0𝑗 and is well-defined. This
formula is of course valid for any kind of multipolar distribution and not restricted to orders to
up to quadrupoles only.

Finally, the self-energy as defined above writes as

ℰself(𝑟{𝑁}̲ ) = 12
∑
1≤𝑗≤𝑁

(
L̂𝑗𝜙𝑗

self(𝑟))||𝑟=𝑟𝑗 = −12
∑
1≤𝑗≤𝑁

(
M0𝑗 ⋅M0𝑗𝐵0(0) +M1𝑗 ⋅M1𝑗𝐵1(0) + 2M2𝑗 ⋅M2𝑗𝐵2(0))

= −
√𝛼𝜋

∑
1≤𝑗≤𝑁

(
M0𝑗 ⋅M0𝑗 + 2𝛼3 M1𝑗 ⋅M1𝑗 + 8𝛼2

5 M2𝑗 ⋅M2𝑗
)
.

(iv.60)
This concludes the proof. ◼
The expression of the self-potential in the proof also gives us that the self-field at 𝑟 = 𝑟𝑗

E𝑗
self(𝑟) = − lim𝑟→𝑟𝑗 (D𝑟𝜙self(𝑟)) = lim𝑟→𝑟𝑗

(
D𝑟L̂𝑗𝐵0(|𝑟 − 𝑟𝑗|)) = −M1𝑗𝐵1(0) = M1𝑗𝛼3/2√𝜋

43, (iv.61)
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which only depends on the dipole moment at site 𝑗 and is also valid for any kind of multipolar
distribution.

Finally, we add a small remark on the surface term. It can be shown by using the same
technique of Section ii.d.1, that for multipoles of any order, the surface term in the case of
spherical summation when surrounded by a medium of dielectric permittivity 𝜖 is

𝐽𝜖(D,M,B3) = 2𝜋(2𝜖 + 1)𝑉|D +M|2, (iv.62)

where M ≔ ∑𝑁𝑗=1M1𝑖.
We recall that the results of this sections are general for any order of multipoles, which gives a

systematic way to derives quantities associated to the Ewald’s summation method. This concludes
the overview on the particle-mesh methods of summation.
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III.A Problem setting

We have presented in Chapter ii a method to do efficient molecular dynamics simulations with a
classical polarisable force field. With its computational complexity of 𝒪(𝑁 log𝑁), the Ewald’s
method of summation to perform computations for a large number of particles. Molecular
dynamics for millions of atoms can be considered, thus allowing to accurately take into account
the environment of systems of interest.

However, classical methods are inherently limited by the fact they cannot describe electrons.
As such, effects such as fluorescence, which can be explained by excited states in quantum
mechanics, or even seemingly simple concepts such as the creation and destruction of molecular
bonds cannot be modeled. Alas, quantum methods are much more computationally intensive,
with computational complexity in 𝒪(𝑁4) for Hartree–Fock, between 𝒪(𝑁3) and 𝒪(𝑁4), de-
pending on the approximation of the model, for density functional theory and even higher for
post-Hartree–Fock methods [CBM06]. Such methods are thus limited to modeling a few
thousand atoms, which is not big enough to describe most proteins; and even less so to describe
them with a complex environment.

Thankfully, quantum mechanics precision may not be needed everywhere. For example in
drug design, biologists often have insights in the processes that can take place, and hence know
particular sites of proteins where the description should be precise; what can be referred as active
sites.

In this chapter, we look at how to model large chemical systems by developing multiscale — or
multiphysics — methods. Some parts of the molecular system will be described with quantum
mechanics, while others will be described with molecular mechanics or continuum solvation.
By mixing the two, we can limit the computational complexity by having 𝒪(𝑁≥3𝑞 + 𝑁𝑚 log𝑁𝑚),
where 𝑁𝑞 is the number of quantum atoms and 𝑁𝑚 is the number of classical atoms.

The idea to combine different physics is not new. For example, in quantum mechanics, chemists
already make abundant use of hybrid functionals in density functional theory, for example through
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range separation of the Coulombic potential [TCS04]. Multiphysics quantum mechanics/contin-
uum solvation methods have also been developed, in particular with the polarisable continuum
model [Amo+98].

For quantum mechanics/molecular mechanics methods, the most common description is done
using electrostatic embedding, a method we will use in this chapter. This method was pioneered
in the 1970s and 1980s by the work of the 2014 Nobel laureates Martin Karplus [Kar14],
Michael Levitt [Lev14] and Arieh Warshell [War14]. This method takes into account an
isolated quantummechanics system and its interactionwith the classical environment, represented
as point charges on the positions of the molecular mechanics atoms. This limits the use of
electrostatic embedding to small systems that can be fully computed with quantum methods.
However, we should note that there are ways to overcome this limit, in particular through the use
of pseudopotentials. However this goes beyond the scope of this chapter. We note that even at
the beginning of the development of those methods, the authors were aware of the need to use
point multipoles and polarisation for the molecular mechanics part; in particular to accurately
describe water [WR84].

The present work started in collaboration with the group of Benedetta Menucci in Pisa,
which was already developing a quantum mechanics/molecular mechanics [Cur+09] model,
mmpol. The model uses the amber force field, with point charges and polarisation, and has
been successfully coupled with polarisable continuum model models [CCM12] to have quantum
mechanics/molecular mechanics/continuum solvation simulations. The aim of the present work
was to develop the same kind of methods, but with the amoeba force field, which is singularly
accurate in describing water, for example, and has a larger set of parameterisation [PC03], which
makes it more suitable at simulating large and complex molecular systems.

In this chapter we will only give a bare-bones description of the proposed quantum mechan-
ics/molecular mechanics method that we call qm/amoeba, and the ideas to use it for molecular
dynamics. We refer the reader to the article Page 74 for more details.

III.B Method

We recall from Section i.e that the energy functional of the amoeba force field accounts for
intramolecular energies, Van der Waals and Coulomb potentials as well as polarisationℰamoeba(𝜇) ≔ ℰintra + ℰVdW + ℰel + ℰpol(𝜇), (ii.1)
where 𝜇 represents the induced dipoles.

We propose a global variational energy, compatible with the use of self-consistent field methods,
depending on the quantum density 𝐷 and the classical induced dipoles 𝜇 written as the sum of
three terms ℰ(𝐷, 𝜇) ≔ ℰqm(𝐷) + ℰamoeba(𝜇) + ℰcoup(𝐷, 𝜇), (ii.2)
of which we will give a brief description. The sum of the last two terms accounts for the energy
due to the environment ℰenv(𝐷, 𝜇) ≔ ℰamoeba(𝜇) + ℰcoup(𝐷, 𝜇). (ii.3)

The coupling term ℰcoup(𝐷, 𝜇) accounts for the reaction of the classical induced dipoles to the
electric field due to the quantum mechanics density as well as the Van der Waals and Coulomb
energy between the quantum mechanics and molecular mechanics subsystems

ℰcoup(𝐷, 𝜇) ≔ ℰpol
coup(𝐷, 𝜇) + ℰVdWcoup + ℰelcoup(𝐷). (ii.4)

The Van der Waals interactions are treated using the amoeba force field, using only the positions
of the quantum atoms. This is due to the peculiar difficulty in having an efficient model for
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dispersion and repulsion in quantum mechanics. Hence it makes sense to regroup them with
the intramolecular energy functional, as none of those terms depends on either the quantum
density or the induced dipoles. We will denote this new functional by ℰFF. Finally, if we merge
the classical and coupling polarisation in the same functional ̃ℰpol(𝐷, 𝜇), we can rewrite the
environment functional as the sum ofℰenv(𝐷, 𝜇) = ℰFF + ̃ℰpol(𝐷, 𝜇) + ℰelcoup(𝐷), (ii.5)

where ℰFF ≔ ℰintra + ℰVdW + ℰVdWcoup + ℰel, (ii.6a)
̃ℰpol(𝐷, 𝜇) ≔ ℰpol

amoeba(𝜇) − 12(𝜇𝑑 + 𝜇𝑝)Eqm(𝐷), (ii.6b)ℰelcoup(𝐷) ≔ 𝑞𝑉qm(𝐷) − 𝜇statEqm(𝐷) − ΘGqm(𝐷), (ii.6c)

and where 𝑞, 𝜇stat and Θ are matrices representing respectively the permanent charges, dipoles
and quadrupoles at the positions of the classical atoms. The quantum potential and its first and
second derivatives are evaluated at each classical atomic positions and have respectively the
following expressions

𝑉qm(𝑟𝑖, 𝐷) ≔
𝑁qm∑
𝑘=1

𝑍𝑘|𝑟𝑖 − 𝑅𝑘| +
𝑁𝑏∑

𝜇,𝜈=1
𝐷𝜇𝜈𝑉𝜇𝜈(𝑟𝑖), (ii.7a)

Eqm(𝑟𝑖, 𝐷) ≔
𝑁qm∑
𝑘=1

𝑍𝑘(𝑟𝑖 − 𝑅𝑘)|𝑟𝑖 − 𝑅𝑘|3 + 𝑁𝑏∑
𝜇,𝜈=1

𝐷𝜇𝜈E𝜇𝜈(𝑟𝑖), (ii.7b)

[Gqm]𝛾𝛾′(𝑟𝑖, 𝐷) ≔
𝑁qm∑
𝑘=1

𝑍𝑘
⎛⎜⎜⎜⎜⎜⎝3(𝑟

𝛾𝑖 − 𝑅𝛾𝑘 )(𝑟𝛾′
𝑖 − 𝑅𝛾′

𝑘 )|𝑟𝑖 − 𝑅𝑘|5 − δ𝛾𝛾′
|𝑟𝑖 − 𝑅𝑘|3

⎞⎟⎟⎟⎟⎟⎠ +
𝑁𝑏∑

𝜇,𝜈=1
𝐷𝜇𝜈G𝛾𝛾′𝜇𝜈 (𝑟𝑖), (ii.7c)

where 𝛾 and 𝛾′ are placeholders for Cartesian coordinates 𝑥, 𝑦 or 𝑧. The integrals 𝑉𝜇𝜈(𝑟𝑖), E𝜇𝜈(𝑟𝑖)
and G𝛾𝛾′𝜇𝜈 (𝑟𝑖) have the expressions

𝑉𝜇𝜈(𝑟𝑖) ≔ −∫
R3

𝜒𝜇(𝑟)𝜒𝜈(𝑟)|𝑟𝑖 − 𝑟| , (ii.8a)

E𝜇𝜈(𝑟𝑖) ≔ −∫
R3

𝜒𝜇(𝑟)𝜒𝜈(𝑟)(𝑟𝑖 − 𝑟)
|𝑟𝑖 − 𝑟|3 , (ii.8b)

G𝛾𝛾′𝜇𝜈 (𝑟𝑖) ≔ −∫
R3

𝜒𝜇(𝑟)𝜒𝜈(𝑟)
⎛⎜⎜⎜⎜⎜⎝3(𝑟

𝛾𝑖 − 𝑟𝛾)(𝑟𝛾′
𝑖 − 𝑟𝛾′)|𝑟𝑖 − 𝑟|5 − δ𝛾𝛾′

|𝑟𝑖 − 𝑟|3
⎞⎟⎟⎟⎟⎟⎠d3𝑟, (ii.8c)

where the functions 𝑟𝑖 ↦ 𝜒⋅(𝑟𝑖) are the atomic orbitals (see Section i.d.3). Using a variational
formulation, the Fock matrix is obtained as the derivative of the energy functional with respect
to the density matrix

𝐹(𝐷, 𝜇) ≔ 𝜕ℰ(𝐷, 𝜇)
𝜕𝐷 = 𝐹qm(𝐷) + 𝐹env(𝐷, 𝜇), (ii.9)

where 𝐹qm is the standard Fock matrix for the quantum subsystem and

(𝐹env)𝜇𝜈 ≔ 𝑞𝑉𝜇𝜈 − 𝜇statE𝜇𝜈 − ΘG𝜇𝜈 − 12(𝜇𝑑 + 𝜇𝑝)E𝜇𝜈. (ii.10)

We have split the terms with respect to the field produced by the quantum density in case the
induced dipoles sites are different from the permanent multipoles sites.
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To solve this, we can solve alternatively for the induced dipoles 𝜇 and for the density matrices𝐷,
hoping to achieve convergence. Which the algorithm does in practice; this is no small matter, due
to the lack of repulsive model in quantum mechanics (see remark above regarding the Van der
Waals terms), which cannot prevent density from spilling out from the quantum mechanics part
to the molecular mechanics part; especially if a positively charge part of the molecular mechanics
comes close to the quantum mechanics subsystem.

The implementation of this method in Gaussian [Fri+09] and TINKER [Pon+10] was success-
ful in computing properties for excited states (see supporting paper Page 74).

III.C Molecular dynamics

To be able to perform molecular dynamics, we need the gradients of the energy terms with respect
to the atomic positions. The derivatives of ℰqm(𝐷) and ℰamoeba(𝜇) are already known from the
models we have used. The new formulæ we need are for

𝜕 ̃ℰpol

𝜕𝑅𝑘 (𝐷, 𝜇) = −12(𝜇𝑑 + 𝜇𝑝)𝜕Eqm𝜕𝑅𝑘 (𝐷) (iii.1)

and 𝜕ℰelcoup𝜕𝑅𝑘 (𝐷) = 𝑞𝜕𝑉qm𝜕𝑅𝑘 (𝐷) − 𝜇stat
𝜕Eqm𝜕𝑅𝑘 (𝐷) − Θ𝜕Gqm𝜕𝑅𝑘 (𝐷) (iii.2)

for all 𝑘 ∈ ⟦1 . . 𝑁qm⟧. There holds for the potential, the field and its gradient

𝜕𝑉qm𝜕𝑅𝛼𝑘 (𝑟𝑖, 𝐷) = 𝑍𝑘(𝑟𝛼𝑖 − 𝑅𝛼𝑘 )|𝑟𝑖 − 𝑅𝑘|3 + 𝑁𝑏∑
𝜇,𝜈=1

𝐷𝜇𝜈
𝜕𝑉𝜇𝜈𝜕𝑅𝛼𝑘 (𝑟𝑖) (iii.3a)

𝜕(Eqm)𝛾′𝜇𝜈𝜕𝑅𝛼𝑘 (𝑟𝑖, 𝐷) = 𝑍𝑘
⎛⎜⎜⎜⎜⎜⎝3(𝑟

𝛼𝑖 − 𝑅𝛼𝑘 )(𝑟𝛾′
𝑖 − 𝑅𝛾′

𝑘 )|𝑟𝑖 − 𝑅𝑘|5 − δ𝛼𝛾′
|𝑟𝑖 − 𝑅𝑘|3

⎞⎟⎟⎟⎟⎟⎠ +
𝑁𝑏∑

𝜇,𝜈=1
𝐷𝜇𝜈𝜕E

𝛾′𝜇𝜈𝜕𝑅𝛼𝑘 (𝑟𝑖) (iii.3b)

𝜕[Gqm]𝛾𝛾′
𝜇𝜈𝜕𝑅𝛼𝑘 (𝑟𝑖, 𝐷) = 3𝑍𝑘

(𝑟𝛼𝑖 − 𝑅𝛼𝑘 ) δ𝛾𝛾′ +(𝑟𝛾𝑖 − 𝑅𝛾𝑘 ) δ𝛼𝛾′ +(𝑟𝛾′
𝑖 − 𝑅𝛾′

𝑘 ) δ𝛼𝛾|𝑟𝑖 − 𝑅𝑘|5
− 15𝑍𝑘 (𝑟𝛼𝑖 − 𝑅𝛼𝑘 )(𝑟𝛾𝑖 − 𝑅𝛾𝑘 )(𝑟𝛾′

𝑖 − 𝑅𝛾′
𝑘 )|𝑟𝑖 − 𝑅𝑘| + 𝑁𝑏∑

𝜇,𝜈=1
𝐷𝜇𝜈𝜕𝐺

𝛾𝛾′𝜇𝜈𝜕𝑅𝛼𝑘 (𝑟𝑖).
(iii.3c)

We note that the gradients of the integrals in Eq. (ii.8) are already computed by quantum
mechanics codes, and do not need to be changed.

We also need the derivatives of ̃ℰpol and ℰelcoup with respect to the positions of the classical
nuclei. The formulæ are a bit simpler once we have noticed that the derivative of the potential is
the electrostatic field, which we already have. The same is true for its gradient. The only new
quantity that we have to write is the matrix of third derivatives of the potential

[𝑂qm]𝛼𝛽𝛾(𝑟𝑖, 𝐷) ≔ −
𝑁qm∑
𝑘=1

3𝑍𝑘
(𝑟𝛼𝑖 − 𝑅𝛼𝑘 ) δ𝛽𝛾 +(𝑟𝛽𝑖 − 𝑅𝛽𝑘 ) δ𝛼𝛾 +(𝑟𝛾𝑖 − 𝑅𝛾𝑘 ) δ𝛼𝛽|𝑟𝑖 − 𝑅𝑘|5

− 15𝑍𝑘 (𝑟𝛼𝑖 − 𝑅𝛼𝑘 )(𝑟𝛽𝑖 − 𝑅𝛽𝑘 )(𝑟𝛾𝑖 − 𝑅𝛾𝑘 )|𝑟𝑖 − 𝑅𝑘| + 𝑁𝑏∑
𝜇,𝜈=1

𝐷𝜇𝜈𝑂𝛼𝛽𝛾𝜇𝜈 (𝑟𝑖), (iii.4)
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where

𝑂𝛼𝛽𝛾𝜇𝜈 (𝑟𝑖) ≔ −∫
R3

𝜒𝜇(𝑟)𝜒𝜈(𝑟)
⎛⎜⎜⎜⎜⎜⎝3(𝑟

𝛼𝑖 − 𝑟𝛼) δ𝛽𝛾 +(𝑟𝛽𝑖 − 𝑟𝛽) δ𝛼𝛾 +(𝑟𝛾𝑖 − 𝑟𝛾) δ𝛼𝛽|𝑟𝑖 − 𝑟|5
− 15(𝑟𝛼𝑖 − 𝑟𝛼)(𝑟𝛽𝑖 − 𝑟𝛽)(𝑟𝛾𝑖 − 𝑟𝛾)|𝑟𝑖 − 𝑟|7

⎞⎟⎟⎟⎟⎠d3𝑟. (iii.5)

The derivatives for the electrostatic energy can now be concisely written as

𝜕ℰelcoup𝜕𝑟𝛼𝑖 (𝐷) = 𝑞(Eqm)𝛼(𝐷) + 𝜇𝛽
stat(Gqm)𝛼𝛽(𝐷) + Θ𝛽𝛾(Oqm)𝛼𝛽𝛾(𝐷). (iii.6)

We note that in TINKER, there is a subtlety due to the definitions of the dipoles and quadrupoles:
the quantities are given with respect to local coordinates on the molecules. Hence, when deriving
the electrostatics contributions with respect to classical particles, we have to also account for
these artificial forces.

Finally, it remains to evaluate the derivatives of the polarisation energy

𝜕 ̃ℰpol

𝜕𝑟𝛼𝑖 (𝐷, 𝜇) = 𝜕ℰpol
amoeba𝜕𝑟𝛼𝑖 (𝜇) − 12(𝜇𝛾𝑑 + 𝜇𝛾𝑝 )(Gqm)𝛼𝛾(𝐷), (iii.7)

where the first part of the sum is unchanged from classical polarisable computations.
We refer the reader to Fig. iii.1 for a workflow of the implementation for molecular dynamics

in Gaussian and TINKER. A Bash driver was developed to launch successively Gaussian and
TINKER. The choice to use the two pieces of software and not only Gaussian was to simplify
the implementation, by not having to redo all the work of Ponder in implementing anew the
amoeba force field. The method was successfully used for molecular dynamics.
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iii.c
M
oleculardynam

ics

Calling TINKER Generating qm input

Updating qm & mm coordinates

Intramolecular (mm),
VdW (qm/mm) and Coulomb (mm)
forces computation (no polarisation)

Adding forces from Gaussian

Saving current coordinates,
accelerations and velocities

(Verlet)

Notify that
TINKER is done

Analyzing qm options l1

Preparing data l301

Computing qm & mm electric fields

Solving for the polarisation energy

Computing qm & qm/mm energies

l502

scf

Computing polarisation forces
(qm/mm & mm) and qm forces l701

TINKER

Gaussian

qm/mm driver

Figure iii.1: Workflow for the quantummechanics/molecular mechanics molecular dynamics. The inner boxes in Gaussian represent subprograms
in which the developments was done.
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ABSTRACT: A fully polarizable implementation of the hybrid quantum
mechanics/molecular mechanics approach is presented, where the classical
environment is described through the AMOEBA polarizable force field. A
variational formalism, offering a self-consistent relaxation of both the MM
induced dipoles and the QM electronic density, is used for ground state
energies and extended to electronic excitations in the framework of time-
dependent density functional theory combined with a state specific response of
the classical part. An application to the calculation of the solvatochromism of
the pyridinium N-phenolate betaine dye used to define the solvent ET(30)
scale is presented. The results show that the QM/AMOEBA model not only
properly describes specific and bulk effects in the ground state but it also
correctly responds to the large change in the solute electronic charge distribution upon excitation.

1. INTRODUCTION

The idea of studying an intrinsically quantum-mechanical
(QM) process taking place in a complex environment by
partitioning the whole system into a (smaller) subsystem (S)
and the environment (E) has a long history in quantum
chemistry. Within this framework, S is identified as the minimal
subunit where the process occurs, and is described using an
accurate albeit expensive level of theory, typically QM, whereas
the environment is treated at a much lower detail but sufficient
to properly describe its effects on the process under study. Two
alternative strategies are most commonly followed: one can
either model the environment as a polarizable continuum1,2 or
employ an atomistic description of E by introducing a
molecular mechanics (MM) force field (FF).3−7 The latter
class of approaches is commonly referred to as QM/MM, and is
widely used, particularly when electronic processes in complex
environments are studied.
Since the first formulations, different QM/MM approaches

have been proposed; in most of them, the ef fective Hamiltonian
defining the electronic properties of the QM subsystem in the
presence of the MM system is divided into a term describing
the isolated S and a term taking into account its electrostatic
interaction with the classical environment through point
charges centered on the MM atoms. This formulation, known

as “electrostatic embedding”, is nowadays the most common
QM/MM formulation: it in fact allows one to include the
effects of the classical subsystem in the determination of the
QM electronic density and all its related properties. What,
however, this approach still misses is the possibility for E to
polarize in response to the charge density (and its eventual
changes) of the S subsystem. To include such a mutual
polarization effect, an extension of the QM/MM formulation
beyond the electrostatic embedding is necessary and different
alternative strategies have been proposed so far.8−20 In this
work, we will illustrate the theoretical development and the
computational implementation of a novel polarizable QM/MM
approach, based on the AMOEBA polarizable FF,21−23 which
we will refer to as QM/AMOEBA. Within this framework, the
environment polarization is achieved through the use of atomic
point dipoles, which are induced as a response to the electric
field generated by the S system as well as the same MM sites
bearing distributed multipoles up to quadrupoles. An approach
to couple AMOEBA to a QM package has been recently
proposed24 in the framework of a non-self-consistent
procedure. In this contribution, for the first time in the context
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of AMOEBA, the global relaxation of the mutual QM/MM
polarization is achieved by solving the QM/AMOEBA
equations in a self-consistent manner, without approximations.
The implementation is further extended to describe

electronically excited states. As a matter of fact, nonpolarizable
QM/MM formulations can be easily extended to excited states,
as the “new” operator has a one-electron nature. When a
polarizable embedding like AMOEBA is used instead, a
difficulty appears when a linear response (LR) approach like
that commonly used in the time-dependent density functional
theory (TD-DFT) is used. In the LR formulation, in fact, the
whole spectrum of the excitations of interest is determined in a
single step calculation by solving for the poles of the proper
response function. When the same problem is formulated
within a polarizable embedding, an additional contribution has
to be taken into account, namely, the dynamic response of the
E subsystem. In the standard formulation of polarizable models
(both in their continuum and MM formulations), such a
response is calculated through the transition densities
corresponding to the different excitations: the oscillating
transition density of the S subsystem induces an oscillating
polarization in the E subsystem which creates an in-phase
response acting back to the transition density.25,26 This LR
formulation has been shown to properly describe the dynamic
environment effect in excitations involving bright states
characterized by a large transition dipole moment.27 The
same formulation, however, lacks the capability of describing
the relaxation of the environment in response to the changes in
the QM density upon excitation: it is therefore not suitable to
model excitations involving large changes such as charge-
transfer (CT) like excitations. To overcome this shortcoming,
various models have been introduced to recover a state-specific
(SS) description of the response both within a continuum28−30

or an MM formulation.20 Here we adopt a perturbative
correction which is exactly equivalent to the so-called corrected
linear response (c-LR) scheme originally developed for
polarizable continuum models.28 Within this framework, a
relaxed density matrix is calculated for the excited state of
interest and the corresponding excitation energy is corrected
for the interaction with the proper induced dipole moments
within the environment.
To show the potentialities of the method, we have selected a

very well-known solvatochromic probe, namely, the pyridinium
N-phenolate betaine dye (or “betaine-30”). Due to its large
negative solvatochromism combined with a high solubility in
many different solvents, it was proposed as a solvatochromic
indicator for the determination of the solvent polarity, through
an empirical scale called ET(30).

31,32 From a computational
point of view, this molecule is really challenging for at least two
reasons: (i) it is zwitterionic in its ground state and (ii) the
excitation is related to an intramolecular charge transfer (CT)
between the pyrimidine and phenolate moieties which acts to
reduce the zwitterionic character. For such a kind of excitation,
the solvation model not only needs to be able to properly
describe both specific and bulk effects in the ground state, but it
also has to correctly respond to the large change in the
electronic charge distribution from the ground to the excited
state. We will show that both of these requirements are fully
satisfied by our implementation of the QM/AMOEBA.

2. THEORY AND IMPLEMENTATION

2.1. The AMOEBA Force Field. One of the main
characteristics of AMOEBA is the improved description of

the electrostatics through atomic multipoles, up to the
quadrupoles, placed on each classical atom. Polarization effects
are included by using an induced point-dipole model within the
smeared Thole damping interaction scheme.33 This is achieved
by also providing the classical atoms with atomic polar-
izabilities. In general, the polarizability αi is a symmetric matrix;

in practice, the scalar isotropic polarizabilities αα⟨ ⟩ ≡ tr( )i i
1

3

are used instead.
In a purely classical framework, at each polarizable site i, the

static multipolar distribution generates an electric field E⃗i that
induces an electric point-dipole moment, μ⃗i. The set {μ⃗i}i=1

NPol is
the unknown of the polarization problem and the minimizer of
the functional34

∑ ∑

∑ ∑

αμ μ μ

μ μ

= − +

+

α α αβ α β

αβ α β

= =

−

= ≠

E
1

2
( )

1

2

i

N

i i
i

N

i i i

i

N

j i

N

ij i j

Pol

1 1

1

1

Pol Pol

Pol Pol

(1)

where indexes α and β generally indicate Cartesian
components, for which the Einstein summation convention is
assumed; Ei and μi are the electric field and the induced dipole,
both at atom site i. Note that we will generally assume that,
while all the classical sites are characterized by multipole
moments, not all of them will be polarizable, i.e., associated
with a polarizability. The number of classical and polarizable
sites are indicated as NMM and NPol, respectively, with NMM ≥

NPol. Further details can be found in previous works on the
force field;23,34 here, we only recall the expression for the
(damped) dipole interaction tensor:

δ
λ λ= −

| ⃗ − ⃗|
+

| ⃗ − ⃗| | ⃗ − ⃗|

| ⃗ − ⃗|
αβ αβ

α β

r r
u

r r r r

r r
u( ) 3 ( )ij

i j
ij

i j i j

i j
ij3 3 5 5

(2)

Several damping schemes to avoid the well-known polarization
catastrophe can be found in the literature.33,35−37 The scheme
employed in AMOEBA makes use of an exponential damping

λ

λ

= −

= − +

−

− −

⎧

⎨
⎪

⎩
⎪

u

u

( ) 1 e

( ) 1 (1 e )e

ij
au

ij
au au

3

5

ij

ij ij

3

3 3

(3)

where α α= ⟨ ⟩⟨ ⟩u r /( )ij ij i j
1/6 is the ef fective distance between two

polarizable sites i and j.
In a more compact notation, E = (E⃗1

T, E⃗2
T, ..., E⃗NPol

T )T and μ =

(μ⃗1
T, μ⃗2

T, ..., μ⃗NPol

T )T are the collections of the electric field and

induced point dipoles at each polarizable site, while the
symmetric, positive definite matrix T, the size of which is 3NPol

× 3NPol and which is usually called the polarization or
interaction matrix, is defined as in eq 4, where ( )ij is the 3 × 3

matrix defined as in eq 2.

α

α

α

=

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

−

−

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

T

N

N

N N N

1
1

12 1

21 2
1

2

1 2
1

Pol

Pol

Pol Pol Pol (4)

Equation 1 can now be rewritten in matrix form as
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μ μ μ= −† †T E
1

2
Pol

(5)

It is possible to find the polarization energy as the minimum of
Pol with respect to the induced point dipoles,34 which

corresponds to the solution to the linear system

μ
μ

∂
∂

= − =T E 0
Pol

(6)

This is the general formulation of the polarization problem,
and is clearly variational. In the case of AMOEBA, however, the
polarization energy is no longer a variational functional of the
induced dipoles. This is due to the fact that two sets of induced
dipoles are generated by two electric fields, differing for the
scaling of the local interactions. Particularly, one set of dipoles,
indicated as μd, is due to the so-called “direct field” Ed, which is
produced by multipoles placed on all the other classical sites.
The other set, indicated as μp, is induced by a “polarization
field” Ep, where the contribution of the 1−n (where n = 2,3,4,5)
neighbors is scaled. A more detailed treatment on this point can
be found in other works of some of us.38 Here it suffices to say
that the previous expression can be recast taking into account
the different fields and induced dipoles. We recall that

μ= − †E
1

2
A
Pol

d p (7)

is the proper expression for the AMOEBA polarization energy.
Imposing the stationarity conditions for both sets of dipoles

μ

μ

=

=⎪

⎪
⎧
⎨
⎩

T E

T E

d d

p p (8)

where each set of induced dipoles is the variational minimizer
of the corresponding energy functional, it is possible to
reformulate the AMOEBA polarization energy as the
combination of three variational expressions, finally obtaining

μ μ μ μ μ μ= − +† † †T E E( , )
1

2

1

2
( )A

Pol
d p d p p d d p (9)

2.2. An SCF-QM/AMOEBA Formulation. The coupling of
a classical description of the environment with SCF-based
methods has already been discussed, especially for polarizable
continuum solvation models in a variational scheme.39,40

Generalizing those formulations to the QM/AMOEBA
approach, the global variational energy functional can be
written as the sum of three terms: (i) a purely QM energy

functional, i.e., the SCF energy functional QM; (ii) a purely
MM term given by the sum of the bonding, dispersion/
repulsion, electrostatic, and polarization terms according to
their definition within the AMOEBA FF; and (iii) a coupling
term; namely, we have

μ μ μ

μ

= + +

= +

P P P

P P

( , ) ( ) ( ) ( , )

( ) ( , )

QM MM Coup

QM Env
(10)

where in the RHS of the equation we added together the

coupling and MM energy functionals in Env . Notice how the
variational strategy, by introducing the global energy functional
in eq 10, automatically takes into account the mutual
polarization effects between the QM density and the induced
dipoles.39,41

The variational environment term, Env , can be written as

the sum of a constant MM contribution FF which does not
depend on either the electronic density or the induced dipoles,
a polarization energy, and a QM/MM coupling part. For the
following manipulations, it is convenient to write separately the
interaction of the QM density with the static multipoles as

P( )QM/MM , and to add the interaction between the induced
dipoles and the QM density to the polarization energy, from

now on named μ̃ P( , )
Pol

; the resulting expressions of the
various terms are

μ μ= + ̃ +P PP( , ) ( , ) ( )Env FF Pol QM/MM
(11)

μ μ μ μ μ

μ μ

̃ = − +

− +

† † †

†

P T E E

E P

( , )
1

2

1

2
( )

1

2
( ) ( )

Pol

d p p d d p

p d
QM

(12)

μ Θ ∇= − −† † †P q V P P E PE( ) ( ) ( ) ( )QM/MM QM
s

QM QM

(13)

where qi, μ⃗s,i, and Θi are the fixed charges, dipoles, and
quadrupoles, respectively.

The electronic terms of QM/MM in eq 13 can be expressed
as functions of the one-particle electron density matrix
elements

∫

∫

∫

∑

∑

∑

∑

∑

∑
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(14)

where the electron density P has been expanded in a basis of
atomic orbitals and is the Jacobian of the electric field with

elements ⃗ ⃗ =αβ

∂ ⃗
∂

α

β

E r( ) ( )
E r

r

( )
, with α and β being generic

Cartesian components. The corresponding terms induced by
the nuclear distribution are trivial and are not reported.
Imposing the stationarity conditions for the global functional

in eq 10, taking into account the constraints on the electronic
density matrices, gives the coupled QM/AMOEBA equations.
The QM/AMOEBA Fock matrix F̃ is obtained by differ-

entiating eq 10 with respect to the density matrix:

μ

μ

̃ =
∂

∂

=
∂

∂
+

∂
∂

= +

F
P

P

P

P

P

P

F F

( , )

( ) ( , )QM Env

(0) Env (15)
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where the term F
(0) of eq 15 corresponds to the Fock matrix of

the pure QM electronic problem, while FEnv is the contribution
to F̃ from the classical environment. The elements of the latter
can be written as

μ μ μΘ= − − − +μν μν μν μν μν
† † † †q V E G EF

1

2
( )Env

s p d (16)

where the matrices Vμν, Eμν, and Gμν are those appearing in eq
14. Note that the Eμν elements involved in the second term on
the RHS of eq 16 are formally identical to those appearing in
the first one but are computed over a different set of atomic
sites (the polarizable ones only).
The linear equations for the dipoles are obtained by setting

the derivatives of eq 10 with respect to both sets of dipoles to
zero:

μ

μ

= +

= +

T E E P

T E E P

( )

( )

p p
QM

d d
QM

(17)

Notice that the Fock matrix depends on the induced dipoles
and that the RHSs of the dipole equations depend on the
density matrix: the two sets of equations are therefore coupled,
accounting correctly for the mutual polarization of the QM and
classical charge densities. The coupled equations need to be
solved iteratively, which is not a problem in practice, as the SCF
equations are already solved with an iterative algorithm. We
note that the matrix T depends only on geometrical parameters,
and can be computed and inverted at the first SCF cycle, thus
reducing the computational requirements at the following steps.
Alternatively, this problem can also be efficiently solved with an
iterative procedure (see section 2.4 for more details).
2.3. Extension to Electronic Excitations. The discussion

so far has involved the energies and properties of the electronic
ground state. To extend the treatment to excited states, we
follow a linear response theory for SCF methods. A complete
derivation of the polarizable QM/MM LR response equations
can be found elsewhere;14,41 here it suffices to say that the
electronic transition energies ωK and densities XK, YK are found
by solving the modified Casida equations42
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The matrices Ã and B̃ are defined as

δ δ ϵ ϵ̃ = − + | − | +
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where ϵ are the orbital energies, (pq|rs) are two-electron
integrals in Mulliken notation, and we assume that the orbitals
are real and the coefficients cx and cl define whether we are
considering the Hartree−Fock theory (cx = 1, cl = 0), pure DFT
(cx = 0, cl = 1), or hybrid DFT. The elements of matrix CPol are
due to the environment polarization:

∫∑ ϕ ϕ μ ϕ ϕ= − ⃗
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The matrix CPol depends on the dipoles μ
T induced by the

transition density PK
T = XK + YK, which are obtained by solving,

for each couple of transition vectors XK, YK, the response linear
equations

μ =T E P( )T
K
T

(21)

where
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Notice that in the right-hand side of eq 21 only the electric field
due to the transition density appears: as the classical multipoles
do not contribute to the transition dipoles, the p and d
response dipoles introduced in section 2.1 are identical. Again,
the modified Casida equations depend (linearly) on the
transition induced dipoles, which in turn depend (linearly)
on the transition vectors X, Y: although the coupling is linear, it
is still convenient to solve the couple equations iteratively, by
solving the transition dipole equations at each step of the
iterative procedure used to solve the Casida equations.
The great advantage of the LR scheme is that it allows one to

obtain a whole spectrum of transition energies at once. If the
system is isolated, it provides the same results as state specific
(SS) approaches, where instead the wave function of each
excited state is explicitly computed. By contrast, the
introduction in the Hamiltonian of a nonlinear term due to
the presence of a polarizable environment results in a formal
difference between the two approaches.25,43 For this reason, a
correction to the LR scheme (called corrected linear response, c-
LR) has been proposed.28 The difference between the two
approaches (LR and c-LR) can be depicted by a two-step
process for excitation in solution: First, the molecule in its
ground state, in equilibrium with the solvent, is excited to the
state K in the presence of a solvent response frozen to the one
of the solute ground state. The description for this step of the
process is the same in both of the approaches. In the second
step, the fast electronic degrees of freedom of the solvent
equilibrate with the electron density of the solute excited state,
and in this part of the process, the LR framework lacks in taking
explicitly into account the energy variation accompanying this
relaxation, whereas it accounts for a correction which, being
originated by the dynamic solute−solvent interactions, can be
classified as a part of dispersion. The working equation, namely,

∑ω ω μ= − ⃗ ⃗ ⃗ ⃗‐ Δ Δr E rP P
1

2
( ; ) ( , )K K

P

N

P P K P K
c LR 0

Pol

(23)

corresponds to the expression of the c-LR transition energy for
the Kth excited state. In this formulation, ωK

0 represents the
response of the system in a solvent frozen in its initial
configuration (corresponding to the system in its ground state),
and it is the solution of a non-Hermitian eigensystem as in eq
18, where Cai,bj

Pol = 0 but the orbitals and their corresponding
energies, employed to build the A and B matrices have been
obtained by solving the SCF equation for the solvated system.
PK
Δ is the so-called relaxed-density matrix, computed through the

so-called Z-vector approach44 as

= +Δ
P P ZK K

T
K (24)

where PK
T is the unrelaxed density matrix with elements given in

terms of the transition vectors |XK, YK⟩, and the Z-vector
contribution ZK accounts for orbital relaxation effects.

2.4. Implementation. The hybrid QM/AMOEBA method
has been implemented in a development version of the
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Gaussian software.45 In the present implementation, the
program computes all the terms that depend on the QM

density, including the sets of induced dipoles. The +FF (0)

energy terms depend neither on the QM density nor on the
induced dipoles and, in a static picture, are constant.
In order to compute the induced dipoles, both an inversion

approach and an iterative one have been implemented. In the
former case, the polarization matrix (eq 4) is computed and
inverted only once during the first step of the SCF and then
stored and multiplied for the appropriate field to obtain the
solutions to the polarization problem. At each SCF cycle, only
two matrix-vector products (one per set of dipoles) need to be
performed, concentrating the computational effort almost
entirely in the first SCF step.
By contrast, in the iterative approach, the polarization

equations are solved iteratively at each SCF step or at each step
of the iterative solution of the Casida equations, using as a
guess the induced dipoles of a previous step, when available.
Two algorithms have been implemented: Jacobi iterations
coupled with direct inversion in the iterative subspace (JI/
DIIS) and the preconditioned conjugate gradient (PCG).34,46

Both are available for the ground and LR excited state
problems.
The advantage of the inversion approach is that the most

expensive part of the procedure, i.e., the matrix inversion, needs
only be performed once. However, the computational cost of
such an operation grows with the cube of the number of
polarizable sites: for large systems, iterative alternatives become
mandatory. Furthermore, iterative methods can be easily
combined with fast summation techniques, such as the fast
multipole method,46,47 in order to achieve linear scaling in
computational cost for the solution of the polarization
equations. We here present the relative time requirements for
the computation of the induced dipoles in the whole SCF
procedure, using the inversion and iterative algorithms. The
calculations have been performed on the test system whose
results will be discussed in section 3. The dimension of the
polarization problem has been artificially varied, by considering
various polarization cutoffs, i.e., by including a different number
of induced dipoles. The dimensions of the QM system, as well
as that of the nonpolarizable classical environment, have been
kept fixed. Figure 1 reports the dependence of the relative times
on the number of induced dipoles.
From the plots reported in the figure, it is clear that the

iterative procedures are more convenient than the inversion
one. This becomes more evident as the size of the problem
increases, since both JI and PCG algorithms scale quadratically
with the number of induced dipoles, while the inversion
algorithm, LU decomposition, is characterized by a cubic
scaling. In particular, when the polarization radius is increased
from 7 to 20 Å (number of dipoles increasing by ∼10× from
765 to 7338), the inversion algorithm increases by ∼300×. For
both JI and PCG algorithms, the relative increase is ∼60×.
Furthermore, when the number of polarizable dipoles is

small (polarization radius 7 Å, 765 dipoles), even if the JI/PCG
methods are faster than the inversion one, the choice of the
solution scheme does not really matter, since the relative time
to solve for the induced dipoles with respect to the total time is,
for each of the three cases, less than 0.1%. This is no longer true
in the most expensive case (polarization radius 20 Å, 7338
dipoles), where almost 16.5% of the time for the calculation is
spent in computing the induced dipoles with the inversion

method (the iterative solutions take less than 1% of the total
time).

3. A TEST CASE: THE SOLVATOCHROMISM OF
BETAINE-30

In this section, we present an application of the QM/AMOEBA
implementation to the simulation of the excitation energies of a
well-known solvatochromic probe, the pyridinium N-phenolate
betaine dye, from now on indicated as ”betaine-30” (see Figure
2). The solvent we selected for this test case is water, since it

constitutes one of the most interesting cases due to its high
polarity combined with a hydrogen-bonding character. In
particular, we will try to dissect these two components of the
solvent effect by comparing QM/AMOEBA with a continuum
description using the polarizable continuum model (PCM)
within its integral equation formalism (IEF).48 We recall that
this model describes the environment as a structureless
continuum, characterized by its macroscopic dielectric function.
A cavity containing the solute is built around it, and the solvent
polarization as a response to the solute charge density is
represented by an induced surface charge distribution on the
cavity.

Figure 1. Relative times needed to solve for the induced dipoles, using
different methods. Green line, inversion; red line, Jacobi iterations;
blue line, preconditioned conjugate gradient. The times are cumulative
and refer to the sum of all SCF cycles until convergence is reached.
The number of SCF cycles considered is the average one across the
various structures considered. The values have been normalized for
comparison with respect to the time required to solve the smallest
polarization problem (7 Å polarization radius, 765 induced dipoles)
with the inversion procedure.

Figure 2. Betaine dye studied.
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In order to obtain a realistic sampling of the solute−solvent
interaction, a well-established procedure has been applied,
which makes use of snapshots extracted from a classical
molecular dynamics (MD) simulation with the AMBER general
force field for organic molecules. An optimized geometry of the
dye was solvated with a cubic box containing 11380 water
molecules, described at the TIP3P level,49 with dimensions of
74 × 72 × 78 Å3. The system was heated from 0 to 300 K for
100 ps with a 2 fs time step, employing the SHAKE algorithm50

as in all the following steps. The Berendsen thermostat51 was
used to control the temperatue. A 200 ps equilibration in the
NVT ensemble was then performed. Before the actual
production, the system was further equilibrated in the NPT
ensamble at 1 atm for 5 ns. Here, the Monte Carlo barostat
implemented in Amber1452 was employed. In the 30 ns long
MD simulation, the betaine-30 was kept frozen in its ground
state equilibrium geometry (computed at the QM/PCM level).
A set of 100 uncorrelated snapshots was extracted, on which
the QM/AMOEBA calculations were performed. Since the
effect of polarization is short-ranged, and the computational
cost increases markedly with the number of induced dipoles,
only the classical atoms within a certain radius (the polarization
radius, Rpol) were allowed to polarize. The optimal value of the
radius was chosen after performing a convergence test, where
the first three excited states of the solvated betaine dye were
computed at increasing values of Rpol. The results, reported in
Figure 3, show that convergence can be observed starting from
10−12 Å. A safe value of Rpol = 15 Å was chosen and employed
in all of the calculations presented.

All calculations (geometry optimizations and excitation
energies) have been performed at the (TD)DFT level of
theory using the CAM-B3LYP exchange-correlation func-
tional53 together with the 6-31+G(d,p) Gaussian basis set.
We particularly focused on the properties of the lowest (bright)
excitation, on which the ET(30) scale is based. The excitation
shows a strong charge-transfer character, and for this reason,

the corrected linear response (c-LR) approach28 is expected to
give a more accurate picture than the standard LR.
The results obtained with the three different QM/AMOEBA

responses described in section 2.3 (namely, ω0, LR, and c-LR)
are summarized in Figure 4.

From the comparison, it is evident that the effects of the
relaxation of the solvent, which we include through a c-LR
formulation, play an important role, as a significant redshift (of
about 0.2 eV) is observed with respect to the frozen solvent
approximation (ω0). As expected due to the CT character of
the excitation, the LR formulation does not change the ω0

value, as it cannot account for the effects of the rearrangement
of electron density undergone by the dye upon excitation.
The comparison with experimental data is, however, the

most interesting test. In order to be able to provide an analysis
which is not biased by systematic errors in the excitation
energies due to the QM level of theory, we compare the
computed and experimental gas-to-water solvatochromic shifts
instead of the absolute excitation energies. To better elucidate
the various effects that determine the observed solvatochromic
shift, i.e., short-range and specific interactions and the bulk
effects, it is useful to compare with two different solvation
models. The first, QM/PCM, employs a purely continuum
description of the solvent, whereas the second, QM(ME)/
PCM, includes a “minimal environment” in the QM system, i.e.,
the two water molecules hydrogen-bonded to the oxygen of the
dye, while the rest of the solvent is still treated at the PCM
level. The latter model should better describe the combination
of short-range specific and bulk interaction with respect to the
QM/PCM analogue. In the QM(ME)/PCM calculation, the
configuration of the QM water molecules has been optimized at
CAM-B3LYP/6-31+G(d,p). The results are reported in Table 1
(all data refer to c-LR calculations).
As expected, the QM/PCM model markedly underestimates

the solvatochromic shift with respect to the two other models
(and to experiments). This clearly shows that including an
atomistic description of the most strongly interacting water
molecules is fundamental to account for the differential
solvation effects in the ground and excited states of the
betaine-30. However, it is worth noting that the inclusion of the
two hydrogen bonded water molecules in the QM region in
combination with a continuum description (through the

Figure 3. Lowest three excitation energies of betaine-30 as functions of
the polarization radius, Rpol, with the total radius for the inclusion of
classical environment fixed at 25 Å. Blue, red, and yellow curves refer
to the first, second, and third excited states, respectively, calculated on
one snapshot at the TDDFT level, within the linear response
approach. A value of Rpol = 0 indicates that all of the solvent molecules
are nonpolarizable, and are only described in terms of fixed multipoles.

Figure 4. Distributions of the lowest (bright) excitation of betaine-30
calculated with the three different QM/AMOEBA responses (LR, blue
line; ω0, yellow line; c-LR, red line). The curves are Gaussian fits of the
histograms.
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QM(ME)/PCM model) still fails to recover a large portion of
the observed solvatochromic effects (namely, 0.4 eV are still
missing to reproduce the experiments). The inclusion of a
larger number of explicit solvent molecules with AMOEBA
instead leads to a solvatochromic shift which is almost exactly
equivalent to the experiments. Such an excellent agreement
might be fortuitous due to the many approximations introduced
in the comparison, such as the use of a calculated vertical
excitation and an experimental band maximum, and the
extrapolated value used for the experimental gas-phase value.
However, the additional +0.4 eV shift obtained going from the
QM(ME)/PCM to the QM/AMOEBA model clearly suggests
that the strong hydrogen-bonding effect is not the only source
of differences with respect to a purely bulk description. Looking
more deeply into the results, it is interesting to point out that
the difference between QM/AMOEBA and QM(ME)/PCM
solvatochromic shifts is already present at the ω0 level, which
means that the addition of the c-LR response is almost equally
described by the two models. We can thus speculate that the
zwitterionic nature of the betaine-30 ground state has a large,
specific, long-range effect in orienting the water molecules and
this leads to a final solvation effect that cannot be accurately
described with a pure continuum or a partial atomistic/
continuum approach.

4. CONCLUSIONS

We presented here the theoretical development and the
computational implementation of a polarizable embedding
QM/MM within the AMOEBA framework. The implementa-
tion accounts for a fully relaxed evaluation of the QM/MM
energy for both ground and excited states, in the framework of
a DFT/TD-DFT theory. In particular for the excited state, a
state-specific (SS) formulation of the response of the classical
part of the system has been used following the c-LR approach
originally developed within continuum models.28 The test case
of betaine-30 is presented and discussed in comparison with
purely continuum and mixed atomistic/continuum models: the
obtained results in the simulation of the large gas-to-water
solvatochromism of this dye show that the QM/AMOEBA
approach can describe with equal accuracy the effect of water
on the zwitterionic ground state and the modification induced
by the excitation.
This work represents the first step of a series of new

developments toward a high-performance, parallel implementa-
tion of polarizable QM/MM molecular dynamics, which stems
from the recent developments in the implementation of
AMOEBA for classical MD simulations in the newly developed
Tinker-HP34,55−57 code and with the implementation of a
versatile and transparent Tinker HP/Gaussian interface for
energy, gradients, and properties. The implementation of

analytical gradients for the QM/AMOEBA model and the
development of the Gaussian/AMOEBA interface will allow us
to exploit not only parallelism but also linear scaling
techniques46 in order to further reduce the overall computa-
tional cost due to the polarizable embedding. The addition of a
further layer to the model, namely, of a polarizable continuum
solvation model, will finally allow one to deal with long-range,
bulk effects while, at the same time, reducing the portion of
environment to be treated explicitly. An innovative, parallel,
linear-scaling implementation of the conductor-like screening
model38,58,59 has already been coupled to AMOEBA for
classical MD simulations38 and to the MMpol dipole-based
polarizable force field for QM/MM calculations:46 the
combination of all the aforementioned developments will
result in a powerful and efficient tool to investigate dynamic
properties and reactivity in complex environments.
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Chapter iv Linear scaling method for polarisable molecular dynamics

Overview
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[Lin+18] Lindgren, Eric B. et al. “An Integral Equation Approach to Calculate Elec-
trostatic Interactions in Many-Body Dielectric Systems”. In: Journal of Computational
Physics 371 (Oct. 15, 2018), pp. 712–731. issn: 0021-9991

Collaborators • Pierre Blanchard • Bérenger Bramas • Louis Lagardère • Ben-
jamin Stamm

IV.A Problem statement

In this chapter, we present a high-performance linear scaling method for the computation of
polarisable molecular dynamics in direct space. The method has hence better scalability than
the 𝒪(𝑁 log𝑁) methods that use Ewald’s summation presented in Chapter ii; which we recall
is due to the use of fast Fourier transform. The method is based on a generalisation of the
spherical harmonics kernel of the fast multipole method for possibly any order point multipoles
distribution of particles. We provide a framework for force fields that use point multipoles up to
quadrupoles with explicit or implicit solvent. We discuss the accuracy, speed and scalability of
our method which are underlined by molecular dynamics simulations.

A brief introduction to the amoeba force field has been given in Section i.e.2 and to the ddcosmo
method in Section i.f. We will first provide a summary of the fast multipole method as well as
the formulæ needed to generalise the method for the amoeba force field. These theoretical parts
will be the building blocks of the developments presented in Section iv.d.

We refer to the work of Fortin [For06], from which we follow the notation, for a detailed
description of the fast multipole method method. For a nice graphical explanation of the method,
we refer the reader to the first figure in [YB11], authors of another fast multipole method software,
ExaFMM.

IV.A.1 Fast multipole method

The fast multipole method [GR97] is a linear scaling method that gives the solution to arbitrary
precision to 𝑁-body problems, in particular for the interaction involving a 1/𝑟 kernel such as
electrostatic interaction that is considered here.
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iv.a Problem statement

Typically, the problem setting considered is the following: Let there be 𝑁 point charges located
at 𝑟𝑖 and of charge M0𝑖 be given. Then, one would like to evaluate the electric potential 𝜙𝑖(𝑟𝑖)
created by those charges and optionally also the electric field, the forces generated or the
interaction energy. All these quantities can be computed using the fast multipole method in an
approximate manner that scales like 𝒪(𝑁) with an additional part scaling like 𝒪(𝑁 log𝑁) for
creating some initial data-structure that is however often negligible for the values of 𝑁 considered
in practice.

The case we are interested in, where we have point multipoles instead of point charges to
describe the electrostatic charges, goes beyond the classical framework of the fast multipole
method. We are looking to compute the same physical quantities presented above, but for
densities generated by point multipoles used in the description of the amoeba force field.

In this case, the input of the method will be the set of nuclear positions 𝑟𝑖 and an associated
generic multipole operator from R to R of the form

L̂𝑖 ≔ M0𝑖 +M1𝑖 ⋅ D𝑖 +M2𝑖 ⋅ D2𝑖 , (i.1)

where the quantities M𝑚𝑖 are the multipoles that characterise the nuclei of the molecular system,
and the differential operators D𝑚𝑖 are the gradient for 𝑚 = 1 and the Hessian for 𝑚 = 2. This
framework covers the static point multipoles presented in Section i.e.2 and the induced point
dipoles with {M0𝑖 ≡ 0, M1𝑖 ≡ 𝜇𝑖, M2𝑖 ≡ 0}.
IV.A.2 Objectives

We wish to compute the potential and some associated quantities due to the Coulomb energy of
a distribution of particles in three dimensions using the fast multipole method.

The particles are characterised by point multipoles, instead of the more usual point charges
for which the fast multipole method is usually applied. That is, for a set of 𝑁 particles at
positions (𝑟𝑖)1≤𝑖≤𝑁, we associate a multipolar operator L̂𝑖 defined by

L̂𝑖 ≔
𝑀∑

𝑚=0
M𝑚𝑖 ⋅ D𝑚𝑖 . (i.2)

For the amoeba force field, we are only interested in multipoles up to order two (𝑀 = 2); that
is charges, dipoles and quadrupoles.

For any 𝑟 ∈ R3 we then have a charge density due to point multipoles L̂𝑖
𝜌𝑖(𝑟) ≔ L̂𝑖𝛿(𝑟 − 𝑟𝑖), (i.3)

where 𝛿 is the Dirac function. This generalises the point charge density 𝑞𝑖𝛿(𝑟 − 𝑟𝑖).
For all 𝑟 ∈ R3, the electrostatic potential obtained from the point multipole L̂𝑖 is then

𝜙𝑖(𝑟) ≔ L̂𝑖
( 1|𝑟 − 𝑟𝑖|

) . (i.4)

We can rewrite this potential for all 𝑟 ∈ R3, using an expansion in spherical harmonics, as

𝜙𝑖(𝑟) =
ℓmax∑
ℓ=0

ℓ∑
𝑚=−ℓ

[𝑆𝑖]𝑚ℓ 1|𝑟 − 𝑟𝑖|ℓ+1𝑌𝑚ℓ
( 𝑟 − 𝑟𝑖|𝑟 − 𝑟𝑖|

) , (i.5)

where ℓmax is the highest order of the point multipole we consider, and the spherical harmonics 𝑌𝑚ℓ
are defined below.
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We want to numerically evaluate the potential due to 𝑁 ≫ 1 point multipoles
∑
1≤𝑖≤𝑁

𝜙𝑖(𝑟), (i.6)

in a large number of points 𝑟 in a simulation box, as well as the energy of the system

ℰ ≔ 12
∑

1≤𝑖,𝑗≤𝑁𝑖≠𝑗
L̂𝑗𝜙𝑖(𝑟𝑗) = 12

∑
1≤𝑖,𝑗≤𝑁𝑖≠𝑗

L̂𝑗L̂𝑗
( 1||𝑟𝑗 − 𝑟𝑗||

)
, (i.7)

and the forces exerted by the particles 𝑗
F𝑗(𝑟) ≔ −D𝑟

⎛⎜⎜⎜⎜⎜⎝L̂𝑗 ∑
1≤𝑖≤𝑁

𝜙𝑖(𝑟)
⎞⎟⎟⎟⎟⎟⎠ , (i.8)

for 𝑗 ∈ ⟦1 . . 𝑁⟧ and 𝑟 ∈ R3.

IV.B Formulas for spherical harmonics

To be able to use the molecular mechanics for the amoeba force field, we will first need a few
definitions and properties regarding Legendre polynomials and spherical harmonics.

IV.B.1 LEGENDRE polynomials

Definition iv.b.1 (Legendre polynomials).— Let ℓ be a natural number. We define the ℓ-th
Legendre polynomial — using Rodrigues’ formula, as the ℓ-th degree polynomial associated
to the function

R ∋ 𝑥 ↦ 𝑃ℓ(𝑥) ≔ 12ℓ dℓ
d𝑥ℓ (𝑥2 − 1)ℓ. (ii.1)

Definition iv.b.2 (Associated Legendre polynomials).— Let ℓ ∈ N and |𝑚| ≤ ℓ, then the
associated Legendre polynomial of degree ℓ and order 𝑚 is the polynomial defined by the
associated polynomial function

R ∋ 𝑥 ↦ 𝑃𝑚ℓ (𝑥) ≔ (−1)𝑚(1 − 𝑥2)𝑚/2 d𝑚
d𝑥𝑚𝑃ℓ(𝑥). (ii.2)

We will also need the following relation for the computation of derivatives of spherical har-
monics.

Proposition iv.b.1.— Let ℓ ∈ N and |𝑚| ≤ ℓ, then we have the identity

d
d𝜃𝑃𝑚ℓ (cos𝜃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ℓ cos(𝜃)𝑃𝑚ℓ (cos𝜃) − (ℓ + 𝑚)𝑃𝑚ℓ−1(cos𝜃)

sin𝜃 if 𝑚 ≠ ℓ
ℓ cos(𝜃)𝑃𝑚ℓ (cos𝜃)

sin𝜃 if 𝑚 = ℓ
. (ii.3)

Admitted proof: This is a classical result, see [Col21c] for example. □
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iv.b Formulas for spherical harmonics

IV.B.2 Spherical harmonics

There are several ways to define the spherical harmonics: either real or complex and with different
normalisation factors.

In practice, the convention may be imposed by the tools that we use. For example, to use the
ddpcm software [GLS17] along with the ScalFMM library [Bla+15], it is more natural for the
latter to use a convention with real spherical harmonics, while for the former to use a convention
for the complex spherical harmonics. To couple ScalFMM with the amoeba force field however we
use only real spherical harmonics; with the supplementary step of converting Cartesian quantities
to spherical harmonics. Hence, in the following, we will present these two conventions.

Definitions

Definition iv.b.3 (Complex spherical harmonics).— Let (𝜃, 𝜑) ∈ [0 ; 𝜋] × [0 ; 2𝜋[, then for
each ℓ ∈ N and |𝑚| ≤ ℓ,

𝑌𝑚ℓ (𝜃, 𝜑) ≔ (−1)𝑚
√(ℓ − |𝑚|)!(ℓ + |𝑚|)!𝑃 |𝑚|ℓ (cos𝜃) exp(𝑖𝑚𝜑). (ii.4)

Definition iv.b.4 (Real spherical harmonics).— Let (𝜃, 𝜑) ∈ [0 ; 𝜋]×[0 ; 2𝜋[, then for all ℓ ∈ N
and |𝑚| ≤ ℓ, we have

�̂�𝑚ℓ (𝜃, 𝜑) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)𝑚√2
√2ℓ + 14𝜋

√(ℓ − |𝑚|)!(ℓ + |𝑚|)!𝑃 |𝑚|ℓ (cos𝜃) sin(|𝑚|𝜑) if 𝑚 < 0
√2ℓ + 14𝜋 𝑃 |𝑚|ℓ (cos𝜃) if 𝑚 = 0
(−1)𝑚√2

√2ℓ + 14𝜋
√(ℓ − |𝑚|)!(ℓ + |𝑚|)!𝑃 |𝑚|ℓ (cos𝜃) cos(|𝑚|𝜑) if 𝑚 > 0

. (ii.5)

Transformations between real and complex spherical harmonics

To convert between real and complex spherical harmonics, we need the following propositions.

Proposition iv.b.2 (Complex to real spherical harmonics transformation).— For any ℓ ∈ N
and |𝑚| ≤ ℓ, we have with (𝜃, 𝜑) ∈ [0 ; 𝜋] × [0 ; 2𝜋[

�̂�𝑚ℓ (𝜃, 𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√2
√2ℓ + 14𝜋 Re𝑌𝑚ℓ (𝜃, 𝜑) if ℓ > 0 and 𝑚 > 0√2ℓ + 14𝜋 𝑌𝑚ℓ (𝜃, 𝜑) if ℓ ≥ 0 and 𝑚 = 0

√2
√2ℓ + 14𝜋 Im𝑌𝑚ℓ (𝜃, 𝜑) if ℓ > 0 and 𝑚 < 0

. (ii.6)

In particular, for any ℓ ∈ N we have

𝑌0ℓ (𝜃, 𝜑) = 𝑃ℓ(cos𝜃) ∈ R. (ii.7)
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Proof: The result is immediate using the definitions, once we notice that

− Im𝑌−𝑚ℓ (𝜃, 𝜑) = Im𝑌𝑚ℓ (𝜃, 𝜑). (ii.8)

◼
Proposition iv.b.3 (Real to Complex spherical harmonics transformation).— For
any ℓ ∈ N and |𝑚| ≤ ℓ, we have with (𝜃, 𝜑) ∈ [0 ; 𝜋] × [0 ; 2𝜋[

𝑌𝑚ℓ (𝜃, 𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√2
√ 4𝜋2ℓ + 1(�̂�𝑚ℓ + 𝑖�̂�−𝑚ℓ ) if 𝑚 > 0

√ 4𝜋2ℓ + 1�̂�𝑚ℓ (𝜃, 𝜑) if 𝑚 = 0
1√2

√ 4𝜋2ℓ + 1(�̂�𝑚ℓ − 𝑖�̂�−𝑚ℓ ) if 𝑚 < 0
. (ii.9)

In particular, for all ℓ ∈ N and |𝑚| ≤ ℓ we have

𝑌−𝑚ℓ (𝜃, 𝜑) = 𝑌𝑚ℓ (𝜃, 𝜑). (ii.10)

Proof: The result is immediate using definitions. ◼
To have a closed formula for the coefficients, we will use the following lemma.

Lemma iv.b.1.— Let ℓ ∈ N. Then, if∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) ∈ R, (ii.11)

we have the identity [𝑆]−𝑚ℓ = [𝑆]𝑚ℓ . (ii.12)

Proof: Let ℓ ∈ N.∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) ∈ R ⇔ ∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ ⋅ 𝑌𝑚ℓ (𝜃, 𝜑) = ∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑)
⇔ ∑

|𝑚|≤ℓ
[𝑆]𝑚ℓ 𝑌−𝑚ℓ (𝜃, 𝜑) = ∑

|𝑚|≤ℓ
[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑)

⇔ ∑
|𝑚|≤ℓ

[𝑆]−𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) = ∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑).
(ii.13)

We thus have the identity as the spherical harmonics are linearly independent. ◼
Finally we have the desired property.

Proposition iv.b.4.— We assume that the coefficients of the complex spherical harmon-
ics [𝑆]𝑚ℓ are given for all ℓ ∈ N and |𝑚| ≤ ℓ. Then the coefficients of the real spherical
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harmonics [ ̂𝑆]𝑚ℓ are

[ ̂𝑆]𝑚ℓ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√2
√ 4𝜋2ℓ + 1 Re[𝑆]𝑚ℓ if 𝑚 > 0√ 4𝜋2ℓ + 1[𝑆]𝑚ℓ if 𝑚 = 0

√2
√ 4𝜋2ℓ + 1 Im[𝑆]𝑚ℓ if 𝑚 < 0

. (ii.14)

Proof: By expanding the development in complex spherical harmonics, we find that

R ∋ ∑
|𝑚|≤ℓ

[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) = [𝑆]0ℓ𝑌0ℓ (𝜃, 𝜑) +
ℓ∑

𝑚=1
([𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) + [𝑆]−𝑚ℓ 𝑌−𝑚ℓ (𝜃, 𝜑))

= [𝑆]0ℓ𝑌0ℓ (𝜃, 𝜑) +
ℓ∑

𝑚=1
([𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) + [𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑)) (by Lem. iv.b.1 and Prop. iv.b.3)

= [𝑆]0ℓ𝑌0ℓ (𝜃, 𝜑) + 2 ℓ∑
𝑚=1

Re ([𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑))

= [𝑆]0ℓ𝑌0ℓ (𝜃, 𝜑) + 2 ℓ∑
𝑚=1

(Re[𝑆]𝑚ℓ Re𝑌𝑚ℓ (𝜃, 𝜑) − Im[𝑆]𝑚ℓ Im𝑌𝑚ℓ (𝜃, 𝜑))

= [𝑆]0ℓ
√ 4𝜋2ℓ + 1�̂�0ℓ (𝜃, 𝜑) + √2

√ 4𝜋2ℓ + 1
⎛⎜⎜⎜⎜⎜⎜⎝

ℓ∑
𝑚=1

Re[𝑆]𝑚ℓ �̂�𝑚ℓ (𝜃, 𝜑) − −1∑
𝑚=−ℓ

Im[𝑆]−𝑚ℓ �̂�𝑚ℓ (𝜃, 𝜑)
⎞⎟⎟⎟⎟⎟⎠ .

Finally, using the identity − Im[𝑆]−𝑚ℓ = − Im [𝑆]𝑚ℓ = Im[𝑆]𝑚ℓ , (ii.15)
we can identify the coefficients from the equality∑

|𝑚|≤ℓ
[𝑆]𝑚ℓ 𝑌𝑚ℓ (𝜃, 𝜑) = ∑

|𝑚|≤ℓ
[ ̂𝑆]𝑚ℓ �̂�𝑚ℓ (𝜃, 𝜑), (ii.16)

which gives us the desired result. ◼
IV.C Generalisation of the fast multipole method

We describe the changes with respect to an implementation of the fast multipole method that only
uses point charges with a so-called spherical harmonics kernel in 𝑟 ↦ 1/𝑟. If other conventions
are used, then the results must be adapted; however the underling idea of what is presented
remains.

One of the main ideas of the fast multipole method is to approximate the interaction between
well-separated particles collectively by means of so-called local and multipole developments.
This requires the introduction of boxes and all charges residing in each box are replaced by
one multipole development located at the centre of the box creating approximatively the same
potential as the set of charges for points sufficiently far away of the box (in the so-called far-field).
This procedure is known as the particle-to-moment operator.

If the point charges are now replaced by multipoles {M0𝑖,M1𝑖,M2𝑖}, the particle-to-moment
operator should be replaced by a so-called moment-to-moment operator as we seek a multipole
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development in the centre of each box creating the same potential in the far-field as the sum of the
given multipoles residing in the box. Since this multipole-approximation is only valid on regions
sufficiently far away from each box, the interaction of closely located particle (in the so-called
near-field) are taken exactly into account by evaluating the needed quantities of Eq. (i.4). The
fact that one deals with multipoles instead of point charges can be easily taken into account
by adapting the formula. These computations are collected in the so-called particle-to-particle
operator. This is the second operator in the fast multipole method methodology that needs to be
adapted to our purpose.

Finally, we have to evaluate at each site the quantities of interests or the functionals as
introduced above (potential, field, etc.) due to boxes in the far-field. This is the role of the
local-to-particle operator. That is we have to compute the derivatives of the analytical formulae
of the far field potential at those sites.

All the other operators (moment-to-moment, moment-to-local, local-to-local) are not affected
and the rest of the algorithm remains the same. This also implies that the algorithmic complexity
of the method stays the same, as the modifications have only local influence.

To sum up, to generalise the fast multipole method to consider multipoles, we need to modify
the computations of the operators:
(i) particle-to-moment, to take into account the multipolar density;
(ii) local-to-particle, to compute the potential and forces due to long-range particles exerted to

point multipoles;
(iii) particle-to-particle, to compute short-range interactions exactly.

IV.C.1 Inner and outer functions

To lighten notation, we introduce the outer and inner functions.
The outer functions enable us to write the potential due to point charges outside a sphere at

points inside it, while the inner functions let us express the potential exerted by points inside a
sphere to points outside it.

Definition iv.c.1.— Let ℓ ∈ N, |𝑚| ≤ ℓ and (𝜚, 𝜃, 𝜑) ∈ R+ × [0 ; 𝜋] × [0 ; 2𝜋[ a point in space,
then we define the outer function as

𝑂𝑚ℓ (𝜚, 𝜃, 𝜑) ≔ 𝑖−|𝑚|(ℓ − |𝑚|)!𝜚ℓ+1 𝑃 |𝑚|ℓ (cos𝜃) exp(𝑖𝑚𝜑), (iii.1)

and the inner function as

𝐼𝑚ℓ (𝜚, 𝜃, 𝜑) ≔ (−1)ℓ 𝑖 |𝑚|𝜚ℓ(ℓ + |𝑚|)!𝑃 |𝑚|ℓ (cos𝜃) exp(𝑖𝑚𝜑). (iii.2)

IV.C.2 P2M operator

To generalise the particle-to-moment operator to multipoles, when we know the development of
the potential in a basis of spherical harmonics, it is sufficient to replace the routine by a the same
kind of computations done by the moment-to-moment routine.

Indeed, we can rewrite the real spherical harmonics using outer functions by identifying the
coefficients (𝑀𝑚ℓ )ℓ∈N,|𝑚|≤ℓ in the identity

ℓmax∑
ℓ=0

ℓ∑
𝑚=−ℓ

[𝑆𝑗]𝑚ℓ 1|𝑧𝑗 − 𝑧𝑐|ℓ+1𝑌𝑚ℓ
( 𝑧𝑗 − 𝑧𝑐|𝑧𝑗 − 𝑧𝑐|

)
= ∞∑

ℓ=0

ℓ∑
𝑚=−ℓ

𝑀𝑚ℓ 𝑂−𝑚ℓ (𝜚𝑗, 𝜃𝑗, 𝜑𝑗), (iii.3)
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where 𝑧𝑐 is the point at which we want to get the multipolar development, 𝑧𝑗 is the position of
the particle, and (𝜚𝑗, 𝜃𝑗, 𝜑𝑗) are the spherical coordinates of the point 𝑧𝑗 − 𝑧𝑐.

Hence, we use the coefficients

𝑀−𝑚ℓ = (−𝑖)|𝑚|[𝑆𝑗]𝑚ℓ√(ℓ + |𝑚|)!(ℓ − |𝑚|)! , that is 𝑀𝑚ℓ = (−𝑖)|𝑚|[𝑆𝑗]𝑚ℓ√(ℓ + |𝑚|)!(ℓ − |𝑚|)! . (iii.4)

IV.C.3 L2P operator

We want the local-to-particle operator to be able to give us physical quantities of interest, namely
• the potential; • the gradient of the potential (to compute the energy of dipoles); • the Hessian
of the potential (for the energy of the quadrupoles); • the third-order partial derivatives of the
potential (for the forces up to quadrupoles).

Proposition iv.c.1 (Local development of the potential).— Let (𝐿𝑚ℓ )ℓ∈N,|𝑚|≤ℓ be the coeffi-
cients of the local development centred around 𝑧𝑐. Then

𝜙(𝑧) = +∞∑
ℓ=0

ℓ∑
𝑚=−ℓ

𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑) =
𝑚∑
ℓ=0

⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ 𝐼0ℓ (𝑟, 𝜃, 𝜑) + 2Re ℓ∑
𝑚=1

𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)
⎞⎟⎟⎟⎟⎟⎠ , (iii.5)

where (𝜚, 𝜃, 𝜑) are the spherical coordinates of the point 𝑧 − 𝑧𝑐.
Admitted proof. □

Proposition iv.c.2 (First-order partial spherical derivatives of the potential).— Using
the same notation as in the previous proposition, we have

𝜕𝜙
𝜕𝜚 (𝑧) =

+∞∑
ℓ=1

ℓ∑
𝑚=−ℓ

ℓ𝜚𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

= +∞∑
ℓ=1

ℓ𝜚
⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ 𝐼0ℓ (𝜚, 𝜃, 𝜑) + 2Re ℓ∑

𝑚=1
𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

⎞⎟⎟⎟⎟⎟⎠ ,
(iii.6a)

𝜕𝜙
𝜕𝜃 (𝑧) =

+∞∑
ℓ=1

ℓ∑
𝑚=−ℓ

𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑)

= +∞∑
ℓ=1

⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ
𝜕𝐼0ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑) + 2Re ℓ∑

𝑚=1
𝐿𝑚ℓ

𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑)
⎞⎟⎟⎟⎟⎟⎠ ,

(iii.6b)

𝜕𝜙
𝜕𝜑(𝑧) = +∞∑

ℓ=1

ℓ∑
𝑚=−ℓℓ≠0

𝑖𝑚𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

= −2 +∞∑
ℓ=1

Im
ℓ∑

𝑚=1
𝑚𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑).

(iii.6c)

Proof: The calculation is straightforward, as it is a direct derivation of Proposition iv.c.1. ◼
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Proposition iv.c.3 (Second-order partial spherical derivatives of the potential).— Still
with the same notation, we have

𝜕2𝜙
𝜕𝜚2 (𝑧) =

+∞∑
ℓ=2

ℓ∑
𝑚=−ℓ

ℓ(ℓ − 1)𝜚2 𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

= +∞∑
ℓ=2

ℓ(ℓ − 1)𝜚2
⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ 𝐼0ℓ (𝜚, 𝜃, 𝜑) + 2Re ℓ∑

𝑚=1
𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

⎞⎟⎟⎟⎟⎟⎠ ,
(iii.7a)

𝜕2𝜙
𝜕𝑟 𝜕𝜃(𝑧) =

+∞∑
ℓ=1

ℓ∑
𝑚=−ℓ

ℓ𝜚𝐿𝑚ℓ
𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑)

= +∞∑
ℓ=1

ℓ𝜚
⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ

𝜕𝐼0ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑) + 2Re ℓ∑
𝑚=1

𝐿𝑚ℓ
𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑)

⎞⎟⎟⎟⎟⎟⎠ ,
(iii.7b)

𝜕2𝜙
𝜕𝜚𝜕𝜑(𝑧) = +∞∑

ℓ=1

ℓ∑
𝑚=−ℓℓ≠0

ℓ𝜚𝑖𝑚𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

= −2 +∞∑
ℓ=1

ℓ𝜚 Im
ℓ∑

𝑚=1
𝑚𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑),

(iii.7c)

𝜕2𝜙
𝜕𝜃2 (𝑧) =

+∞∑
ℓ=1

ℓ∑
𝑚=−ℓ

𝜕2𝐼𝑚ℓ𝜕𝜃2 (𝜚, 𝜃, 𝜑)

= +∞∑
ℓ=1

⎛⎜⎜⎜⎜⎜⎜⎝𝐿0ℓ
𝜕2𝐼0ℓ𝜕𝜃2 (𝜚, 𝜃, 𝜑) + 2Re ℓ∑

𝑚=1
𝐿𝑚ℓ

𝜕2𝐼𝑚ℓ𝜕𝜃2 (𝜚, 𝜃, 𝜑)
⎞⎟⎟⎟⎟⎟⎠ ,

(iii.7d)

𝜕2𝜙
𝜕𝜃𝜕𝜑(𝑧) = +∞∑

ℓ=1

ℓ∑
𝑚=−ℓℓ≠0

𝑖𝑚𝐿𝑚ℓ
𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑)

= −2 +∞∑
ℓ=1

Im
ℓ∑

𝑚=1
𝑚𝐿𝑚ℓ

𝜕𝐼𝑚ℓ𝜕𝜃 (𝜚, 𝜃, 𝜑),
(iii.7e)

𝜕2𝜙
𝜕𝜑2 (𝑧) = − +∞∑

ℓ=1

ℓ∑
𝑚=−ℓℓ≠0

𝑚2𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑)

= 2 +∞∑
ℓ=1

Re
ℓ∑

𝑚=1
𝑚2𝐿𝑚ℓ 𝐼𝑚ℓ (𝜚, 𝜃, 𝜑).

(iii.7f)

Proof: The calculation is straightforward, as it is a direct derivation of Proposition iv.c.2. ◼
The third-order partial spherical derivatives of the potential is more tedious but as straightfor-

ward to compute. We will omit the proposition. For this, the only new quantities that we need
compared to the computation of the potential are the partial derivatives with respect to 𝜃 of the
inner function.
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IV.C.4 P2P operator

The modifications that have to be done are very close to the ones to do for the local-to-particle
method, with the difference that the calculations have to be done in the complex spherical
harmonics basis and not with inner functions.

In practice, the main difference is that instead of having to differentiate the function 𝑟 ↦ 𝑟ℓ
for a natural integer ℓ, we have to differentiate the function 𝑟 ↦ 𝑟−(ℓ+1). Hence we will omit the
formulæ.

IV.D Software implementation for the AMOEBA force field

In this part, we describe in more details the developed implementation to use the fast multipole
method with the amoeba force field. We did other implementations of the method to apply the
fast multipole method to other problems — in particular for the paper [Lin+18], but what we
present here is the more general case we looked at.

The fast multipole method computations were externalised to ScalFMM [Bla+15], which is a
general C++ library. Our modifications were introduced through its add-on system. The amoeba
simulations were done with the Fortranmolecular mechanics software TINKER [Pon+10]. Every
computation that is quadratic in the number of particles was modified so that ScalFMM performs
the computations.

For the communication between these two software (ScalFMM and TINKER), we created a
C interface to ScalFMM, and used Fortran’s compilers ability of calling C functions (foreign
function interface).

This is done to limit the cost of an increased complexity in the maintenance and evolution of
the implementation. We would expect faster timings if all the computations were done within a
single code.

In Table iv.1, we give an overview of what we are able to compute using the described method.
To obtain the energy for 2𝑛 poles — and thus the forces of 2𝑛−1 poles, we derived the equations
by hand. This is straightforward, albeit tedious, work.

Table iv.1: Status of the implementation in ScalFMM

Terms Potential Energy Forces
Charges ✓ ✓ ✓
Dipoles ✓ ✓ ✓
Quadrupoles ✓ ✓ ̧✓
General multipoles ✓ ✗ ✗
For a general framework, we would need a closed formula for
the derivatives of the Legendre polynomials with respect to
the angular variable.

IV.D.1 Integration for polarisable classical molecular dynamics

In this section, we look at how to convert between Cartesian and spherical harmonics representa-
tion of multipoles, as the former description is often used in molecular dynamics software.

We will need the following propositions to convert Cartesian quantities to real spherical
harmonics. The notation for the multipoles are changed to use ones that are more common
in chemistry: 𝑞𝑖 ∈ R, 𝜇𝑖 ∈ R3 and Θ𝑖 ∈ R3×3 representing respectively the charges, dipoles and
quadrupoles, while ∇𝑖 and ∇𝑖∇𝑖 represent respectively the differential operators D𝑖 and D2𝑖 .
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Proposition iv.d.1 (Cartesian to real spherical harmonics).— Let

L̂𝑖 = 𝑞𝑖 + 𝜇𝑖 ⋅ ∇𝑖 + Θ𝑖 ∶ ∇𝑖∇𝑖 (iv.1)

be the multipolar density operator associated to a point 𝑟𝑖 ∈ R3.
Then, the coefficients for this multipole in a real spherical harmonics basis are

[ ̂𝑆𝑖]00 = √4𝜋𝑞𝑖, (iv.2a)

[ ̂𝑆𝑖]−11 =
√4𝜋3 𝜇𝑖,𝑦, [ ̂𝑆𝑖]01 =

√4𝜋3 𝜇𝑖,𝑧, [ ̂𝑆𝑖]11 =
√4𝜋3 𝜇𝑖,𝑥, (iv.2b)

[ ̂𝑆𝑖]−22 = 6
√4𝜋15Θ𝑖,𝑥𝑦, [ ̂𝑆𝑖]−12 = 6

√4𝜋15 ,Θ𝑖,𝑦𝑧,
[ ̂𝑆𝑖]02 = −6

√ 𝜋15(Θ𝑖,𝑥𝑥 + Θ𝑖,𝑦𝑦),
[ ̂𝑆𝑖]12 = 6

√4𝜋15Θ𝑖,𝑥𝑧, [ ̂𝑆𝑖]22 = 6
√ 𝜋15(Θ𝑖,𝑥𝑥 − Θ𝑖,𝑦𝑦).

(iv.2c)

Proof: The potential exerted by a multipolar operator L̂𝑖 is given in Cartesian coordinates by

𝜙𝑖(𝑟) = L̂𝑖
( 1|𝑟 − 𝑟𝑖|

) = 𝑞𝑖|𝑟 − 𝑟𝑖| +
∑
𝛾

𝜇𝑖,𝛾(𝑟 − 𝑟𝑖)𝛾|𝑟 − 𝑟𝑖|3 +∑
𝛾

∑
𝛾′

3(𝑟 − 𝑟𝑖)𝛾Θ𝛾𝛾′(𝑟 − 𝑟𝑖)𝛾′
|𝑟 − 𝑟𝑖|5 , (iv.3)

where 𝛾 and 𝛾′ go through the coordinates {𝑥, 𝑦, 𝑧}.
However, this same potential is written in real spherical harmonics basis as

𝜙𝑖(𝑟) =
2∑

ℓ=0

ℓ∑
𝑚=−ℓ

[ ̂𝑆𝑖]ℓ,𝑚 1|𝑟 − 𝑟𝑖|ℓ+1 �̂�𝑚ℓ
( 𝑟 − 𝑟𝑖|𝑟 − 𝑟𝑖|

)
(iv.4)

We can identify the coefficients by hand, using the fact that the Cartesian coordinates can be
written in spherical coordinates as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑟𝑥 = sin(𝜃) cos(𝜑)
𝑟𝑦 = sin(𝜃) sin(𝜑)
𝑟𝑧 = cos(𝜃)

, (iv.5)

that the first associated Legendre polynomials are

𝑃00 (cos𝜃) = 1,
𝑃01 (cos𝜃) = cos𝜃, 𝑃11 (cos𝜃) = − sin𝜃,

𝑃02 (cos𝜃) = 3 cos2 𝜃 − 12 , 𝑃12 (cos𝜃) = −3 cos𝜃 sin𝜃, 𝑃22 (cos𝜃) = 3 sin2 𝜃;
(iv.6)

and finally that, by convention, the trace of the trace of quadrupoles matrices is zero

Θ𝑥𝑥 + Θ𝑦𝑦 + Θ𝑧𝑧 = 0. (iv.7)
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By denoting 𝜃 and 𝜑 the angles given by the projection on the unit sphere of the vector 𝑟 − 𝑟𝑖,
we then find

�̂�00(𝜃, 𝜑) = 1√4𝜋, (iv.8a)

�̂�−11 (𝜃, 𝜑) =
√ 34𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑦|𝑟 − 𝑟𝑖| , �̂�01(𝜃, 𝜑) =

√ 34𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑧|𝑟 − 𝑟𝑖| ,
�̂�11(𝜃, 𝜑) =

√ 34𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑥|𝑟 − 𝑟𝑖| ,
(iv.8b)

�̂�−22 (𝜃, 𝜑) =
√154𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑥(𝑟 − 𝑟𝑖)𝑦|𝑟 − 𝑟𝑖|2 , �̂�−12 (𝜃, 𝜑) =

√154𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑦(𝑟 − 𝑟𝑖)𝑧|𝑟 − 𝑟𝑖|2 ,
�̂�02(𝜃, 𝜑) = 12

√ 54𝜋 ⋅ 2(𝑟 − 𝑟𝑖)2𝑧 − (𝑟 − 𝑟𝑖)2𝑥 − (𝑟 − 𝑟𝑖)2𝑦|𝑟 − 𝑟𝑖|2 ,
�̂�12(𝜃, 𝜑) =

√154𝜋 ⋅ (𝑟 − 𝑟𝑖)𝑧(𝑟 − 𝑟𝑖)𝑥|𝑟 − 𝑟𝑖|2 , �̂�22(𝜃, 𝜑) = 12
√154𝜋 ⋅ (𝑟 − 𝑟𝑖)2𝑥 − (𝑟 − 𝑟𝑖)2𝑦|𝑟 − 𝑟𝑖|2 .

(iv.8c)

It is then straightforward to identify the coefficients. ◼
IV.D.2 Dealing with scalings in the fast multipole method

We saw in Chapter i that some interactions have to be modified for the amoeba force field: Some
of them have to be screened (in the static electrostatic energy computation), while other have to
be damped by the Thole damping scheme (in the polarisation energy computation). However,
the screening and damping are local in the sense that the interaction is modified only for particles
that are close to each other.

Screening terms

As the interactions to be scaled are some neighbours (in the sense of bonding) of each atoms,
this means that we can store the list of neighbours in some arrays that are computed only once.
This enables us to compute the full, non-screened, interactions with the fast multipole method,
while removing the quantities in excess directly in the molecular mechanics software after calling
the external fast multipole method library. Some interactions are thus computed twice, which
adds some overhead to the computations. However as the arrays are of a fixed-size this does not
change the algorithmic complexity. Practical experience shows that the time spent computing the
corrections is negligible with respect to the time spent in the fast multipole method. Moreover,
this has the advantage of making the fast multipole method software oblivious to this peculiarity
of the computations.

Damping terms

For the Thole damping the same trick could be used in principle, but since no topological
considerations are made it can be directly integrated into the fast multipole method code
without communicating topological neighbor lists. Since the Thole damping scheme is such that
modifications appear only in the near-field, only the particle-to-particle part of the algorithm has
to be modified; all the far-field computations remaining untouched.
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IV.E Results

IV.E.1 Calibration

The fast multipole method has two degrees of freedom: the expansion order ℓ of the spherical
harmonics and the height lv of the octree. The height of the octree has to be chosen with respect
to the size of the system: As the first level exactly encloses the system, should the height remain
constant, then the bigger the system, the more particles would be in the smallest boxes (leaves).
In consequence, the near-field interaction would scale quadratically and start to dominate the
total cost after a certain number of particles. One way to adapt the height with respect to the
system is to use the fact that particles tends not to be arbitrarily close to each other. We can
therefore fix the edge length b of the smallest box of the octree. Then the height will be the
smallest integer lv such that the cube of edge length lv × b contains all particles. We then use
the integer lv as parameter for the octree and lv × b for the size of simulation box. We refer to
Fig. iv.1 for a schematic description.

Figure iv.1: Schematic description for the minimum box size b. For a minimum box size of one
unit (in orange), we have an associated depth of three for the fast multipole method
tree: If we have three levels, then all particles are included in the full simulation box
(in black).

To choose the parameters, we tested several of them for different systems and looked at the
error on the potential created by the charges with respect to the exact computation using the
naive — but exact — double loop method of quadratic computational complexity. The results
are reported in Tables iv.2 to iv.4. The systems had between 2000 and 12 000 particles, with
steps of 2000 particles, randomly inside a box of fixed size and the charges were arbitrarily fixed
to some value. To lighten the tables, we omitted results for 4000, 6000 and 10 000 particles.
We note that we did the same kind of tests for multipoles up to quadrupoles, but the results
were similar and hence are not reported. Moreover, as point multipoles were arbitrarily fixed for
calibration and had no particular physical meaning, we rather tried to chose optimal parameter
only for point charges, and validate them for test-cases on real molecular systems later on.

The potential was evaluated at every particles’ positions. The rightmost column indicate if
the computation was faster or slower than with the reference method. Are also reported the
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spherical harmonics expansion order ℓ, the minimum box size 𝐵 of the fast multipole method tree,
in ångströms and its associated height lv of the fast multipole method tree, the time that was the
computations took, the root-mean-square on the potential and the maximum of the error max on
the potential.

Table iv.2: Precision results for 2000 point charges
ℓ 𝐵 lv time rms max
6 4.0 5 0.0125 1.94 × 10−4 1.29 × 10−3 ✗6 8.0 4 0.0102 1.76 × 10−4 1.31 × 10−3 ✗6 12.0 4 0.0140 1.18 × 10−4 7.96 × 10−4 ✗6 16.0 3 0.0189 1.36 × 10−4 1.43 × 10−3 ✗6 20.0 3 0.0216 2.09 × 10−5 5.30 × 10−4 ✗8 4.0 5 0.0213 5.22 × 10−5 4.60 × 10−4 ✗8 8.0 4 0.0124 4.74 × 10−5 4.94 × 10−4 ✗8 12.0 4 0.0156 2.88 × 10−5 2.95 × 10−4 ✗8 16.0 3 0.0202 3.57 × 10−5 5.25 × 10−4 ✗8 20.0 3 0.0230 6.03 × 10−6 2.25 × 10−4 ✗10 4.0 5 0.0358 2.21 × 10−5 2.23 × 10−4 ✗10 8.0 4 0.0172 1.99 × 10−5 2.28 × 10−4 ✗10 12.0 4 0.0170 1.25 × 10−5 1.43 × 10−4 ✗10 16.0 3 0.0229 1.40 × 10−5 2.02 × 10−4 ✗10 20.0 3 0.0244 1.31 × 10−6 3.53 × 10−5 ✗12 4.0 5 0.0565 6.66 × 10−6 9.14 × 10−5 ✗12 8.0 4 0.0181 6.11 × 10−6 9.08 × 10−5 ✗12 12.0 4 0.0188 3.48 × 10−6 4.47 × 10−5 ✗12 16.0 3 0.0232 4.98 × 10−6 9.69 × 10−5 ✗12 20.0 3 0.0255 4.83 × 10−7 1.30 × 10−5 ✗

Ref. 0.0076

Table iv.3: Precision results for 8000 point charges
ℓ 𝐵 lv time rms max
6 4.0 6 0.0581 2.81 × 10−4 2.27 × 10−3 ✓6 8.0 5 0.0378 2.64 × 10−4 2.29 × 10−3 ✓6 12.0 5 0.0809 4.09 × 10−4 4.38 × 10−3 ✓6 16.0 4 0.1301 2.37 × 10−4 2.31 × 10−3 ✗6 20.0 4 0.1648 3.62 × 10−4 4.51 × 10−3 ✗8 4.0 6 0.1087 6.90 × 10−5 5.19 × 10−4 ✓8 8.0 5 0.0491 6.32 × 10−5 5.27 × 10−4 ✓8 12.0 5 0.0853 1.08 × 10−4 1.07 × 10−3 ✓8 16.0 4 0.1290 5.23 × 10−5 5.08 × 10−4 ✗8 20.0 4 0.1684 8.63 × 10−5 1.14 × 10−3 ✗10 4.0 6 0.1838 3.14 × 10−5 3.81 × 10−4 ✗10 8.0 5 0.0636 2.92 × 10−5 3.53 × 10−4 ✓10 12.0 5 0.0911 4.72 × 10−5 5.37 × 10−4 ✓10 16.0 4 0.1336 2.32 × 10−5 3.12 × 10−4 ✗10 20.0 4 0.1730 3.57 × 10−5 4.73 × 10−4 ✗12 4.0 6 0.2968 8.49 × 10−6 1.04 × 10−4 ✗12 8.0 5 0.0821 7.58 × 10−6 1.05 × 10−4 ✓

Ref. 0.1196
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Table iv.3: (continued)
ℓ 𝐵 lv time rms max
12 12.0 5 0.1032 1.39 × 10−5 2.52 × 10−4 ✓12 16.0 4 0.1388 5.94 × 10−6 1.02 × 10−4 ✗12 20.0 4 0.1791 1.02 × 10−5 2.24 × 10−4 ✗

Ref. 0.1196

Table iv.4: Precision results for 12 000 point charges
ℓ 𝐵 lv time rms max
6 4.0 6 0.0955 3.13 × 10−4 3.34 × 10−3 ✓6 8.0 5 0.0624 2.96 × 10−4 3.00 × 10−3 ✓6 12.0 5 0.1363 4.33 × 10−4 7.85 × 10−3 ✓6 16.0 4 0.2322 2.69 × 10−4 3.05 × 10−3 ✓6 20.0 4 0.3247 3.85 × 10−4 5.26 × 10−3 ✗8 4.0 6 0.1789 7.68 × 10−5 8.27 × 10−4 ✓8 8.0 5 0.0740 7.23 × 10−5 8.83 × 10−4 ✓8 12.0 5 0.1413 1.11 × 10−4 1.01 × 10−3 ✓8 16.0 4 0.2316 6.22 × 10−5 8.23 × 10−4 ✓8 20.0 4 0.3276 9.21 × 10−5 1.04 × 10−3 ✗10 4.0 6 0.3019 3.68 × 10−5 4.35 × 10−4 ✗10 8.0 5 0.0896 3.49 × 10−5 3.69 × 10−4 ✓10 12.0 5 0.1501 5.10 × 10−5 6.95 × 10−4 ✓10 16.0 4 0.2381 2.87 × 10−5 3.65 × 10−4 ✓10 20.0 4 0.3341 4.19 × 10−5 5.48 × 10−4 ✗12 4.0 6 0.4756 9.34 × 10−6 1.35 × 10−4 ✗12 8.0 5 0.1187 8.44 × 10−6 1.28 × 10−4 ✓12 12.0 5 0.1623 1.45 × 10−5 3.68 × 10−4 ✓12 16.0 4 0.2450 7.17 × 10−6 1.08 × 10−4 ✓12 20.0 4 0.3404 1.11 × 10−5 1.78 × 10−4 ✗

Ref. 0.2681
We remark that in general, the time increases and the errors decrease as the box length increases.

This is consistent with the fact that the number of interactions that are exactly computed increases.
The time actually decreases between using a box length of 4.0 and 6.0; this can be explained by
the increase of work that has to be done having to use an octree with a depth of six levels instead
of five. This glitch is not present for other change of depth. We also remark that time increases
with the expansion order ℓ, while the error decreases.

Based on the above observations, we have selected the parameters (ℓ, 𝐵) to be (6, 12.0) or (8, 8.0)
as they seem to represent a good trade-off between accuracy and speed. We notice that the latter
parameters are both more precise and faster than the former parameters.

IV.E.2 Performance results

For the remaining of this section on the analysis of the scalability, we did computations for a
single time-step of a molecular dynamic simulation on homogeneous water boxes of different
sizes. The amoeba force field was used for the parameterisation of the multipoles up to quadru-
poles. Computations were done with and without the inclusion of the polarisation term. When
polarisation is active, we used a convergence parameter of 10−5 on the residual.
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Linear scaling

We first analyse the scaling of the computational time when the number of atoms increases on
a fixed number of 216 cores. In Fig. iv.2, we report the total execution time for performing
one time-step of amoeba polarisable molecular dynamics using our integration of TINKER with
ScalFMM, as well the average time to run a single call to the fast multipole method method.
We observe that the scaling is indeed linear, as expected, as the size of the system increases.
The computations using the parameters (ℓ, 𝐵) of (8, 8.0) are faster than for (6, 12.0), which is in
accordance with the observation of the calibration results.
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Figure iv.2: Timings for one time-step of amoeba polarisable molecular dynamics on different
sizes of homogeneous water boxes

Weak and strong scalability

In this section, we look at strong and weak scalability results where we have chose an order of
expansion ℓ = 8 and a minimum box size of 𝐵 = 8.
Strong scalability In Fig. iv.3, we analyse the strong scalability of the method: We look at
the computational time when we increase the number of processors while fixing every other
parameters.

First, we note that the scaling is roughly the same whether or not we use polarisation, as can
be seen in Fig. iv.3a for a water box of around 100 000 atoms. As it is significantly faster to do
computations without polarisation, the remaining comparisons within this section will not discuss
it, and computations should be assumed to use the amoeba force field without polarisation.

To have a baseline for the scalability, we have also reported the scaling of the double loop
algorithm (with polarisation) implemented in TINKER. The results are similar.

In Fig. iv.3b, we compare the speedup for three different water boxes of between 1.0 × 105
and 2.5 × 106 atoms. We can observe that the scalability is better with the largest boxes that
we used. This can be explained by the fact that the work to be done by every processor is more
homogeneous. However, we are far from optimal scaling, which can be explained by some lack
of homogeneity in the distribution of particles for each processor; in particular for processors
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Figure iv.3: Strong scalability results with water boxes of different sizes for (ℓ, 𝐵) = (8, 8.0). The
dashed curve represents optimal scaling.

attached to particles at the border of the system. It can also be explained by some overhead of
the implementation, as we recreate the data structure (which scales as 𝑁 log𝑁) at every new
time-step.
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Figure iv.4: Weak scalability without polarisation for different water boxes of sizes between96 000 and 3 million atoms

Weak scalability Finally, in Fig. iv.4 we triple the number of processors as we roughly triple the
number of atoms in the box, starting with eight processors. The trends show that we can keep a
linear increase in the cost of doing the molecular dynamics as we increase the number of atoms
by jointly increasing the number of processors. We note that we were limited by using existing
water boxes, which were only approximately increasing by multiples of three; which can explain
the glitch for the second point. However, we are confident of the weak scaling due to the linear
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trend for systems that had atoms varying by orders of magnitude.

IV.E.3 Energy conservation

To validate the choice of parameters we have made in Section iv.e.1 for a possibly long-running
molecular dynamics, we look at the conservation of energy for small proteins of different sizes.

As we look at energy conservation, we will use notions of short-term fluctuations and long-term
drift for the energy. The former is computed by averaging the root-mean-square of the energy
fluctuations every 50 femtoseconds; while the latter is by looking at the slope of linear curves
that fit the energies with respect to the time in picoseconds. Depending on whether the system
was first stabilised with canonical ensemble molecular dynamics, we may discard some of the
first time-steps, to prevent accounting for natural fluctuations at the beginning. We will state
when this is the case.

The reader should be aware that for figures that we will present, panels may not be directly
comparable to one another. Indeed, some computations have different initial geometries, which
can be spotted by the shift in energy on the ordinate, or the different time-steps.

Dihydrofolate reductase protein

In Figs. iv.5 and iv.6 we report results for the dihydrofolate reductase (dhfr) [Ban88], which
has 2489 atoms. We used the configuration available in TINKER, which we prepared by heating it
to 300 kelvins using the Bernstein thermostat with the full amoeba force field for 20 picoseconds.
This molecule was used as it is small enough to be able to compare the energy drift with the exact
computations using the double loop method.

To only account for the approximations due to the use of the fast multipole method, we ran a
molecular dynamics of a couple of hundred picoseconds with 0.1 femtosecond time-steps and
without polarisation. With the double loop method, which is not reported, the energy varies
by around 1.0 × 10−1 kcal/mol for a 250 picoseconds molecular dynamics. We tested for point
charges only and multipoles up to quadrupoles. The results with the fast multipole method are
reported in figure Fig. iv.5, and are similar in both cases.

No energy drift is really noticeable on the figure for parameters (ℓ, 𝐵) = (6, 12.0), and are
similar, although a bit higher than the reference using the double loop method. For parame-
ters (ℓ, 𝐵) = (8, 8.0), a drift is present, but reasonable in view of the length of the molecular
dynamics. We notice that compared to the calibration results of Section iv.e.1, the former param-
eters now seem to give the more accurate results, which can be explained by the bigger box in
which the interactions are exactly computed. We do not report the timings, but we note that the
latter parameters still give the fastest timings.

In Fig. iv.6, we ran the simulation on the same molecule, but with polarisation, after doing a
canonical molecular dynamics for 20 picoseconds. The time-steps were chosen as 0.25 femtosec-
ond and 1.0 femtosecond for the canonical and micro-canonical ensembles molecular dynamics.
We used a conservative convergence parameter for polarisation of 10−8, to prevent an energy drift
due to that parameter. We do not observe an energy drift in either case, although the fluctuations
are more important — but expected — with the larger time-step.

We also report in Table iv.5 the results for the short-term fluctuations and long-term drift,
which confirm these observations. We note that the simulation times reported there are longer
than the one in the figure. It is because we only show simulations for the same number of
time-steps in each panel.
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Figure iv.5: dhfr without polarisation and with 0.1 femtosecond time-steps. The curve in black
is with parameters (ℓ, 𝐵) = (6, 12.0) and in blue with (8, 8.0). We extracted the
energy every 100 steps.
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Figure iv.6: Energy conservation for dhfr with the full amoeba force field and fast multipole
method parameters (ℓ, 𝐵) = (6, 12.0). Polarisation convergence was set to 10−8
and the computations were done on 24 processors. We extracted the energy ev-
ery 100 steps.
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Table iv.5: Short-term fluctuations and long-term drift in kcal/mol for the total energy of dhfr
with associated simulation length in picoseconds and time-steps in femtoseconds

case parameters stf ltd length time-step
charges (iv.5a) (6, 12.0) 1.4 × 10−3 −4.2 × 10−4 265 0.10(8, 8.0) 1.6 × 10−2 1.1 × 10−2 215 0.10
multipoles (iv.5b) (6, 12.0) 3.1 × 10−3 −1.5 × 10−3 237 0.10(8, 8.0) 4.5 × 10−2 4.4 × 10−2 399 0.10
amoeba (iv.6a) (6, 12.0) 1.7 × 10−2 −2.1 × 10−3 24 0.25
amoeba (iv.6b) (6, 12.0) 1.1 × 100 −1.6 × 10−2 10 1.0

Dronpa protein

We now look at the conservation of energy for the first picosecond with systems of different sizes
with polarisation. We prepared the systems by first minimising its energies and then heated them
to 300K using the Bernstein thermostat and time-steps of 1.0 femtosecond for a picosecond
using the full amoeba force field. We extracted different sections of the dronpa protein [Ban06].
The molecule was not solvated and computations were performed on 24 cores. The sections are
of respective sizes 3783 atoms, 7723 atoms, 11 728 atoms, 15 580 atoms and 19 663 atoms. The
results were similar in all cases, with higher fluctuations as the number of atoms increased. We
only report figures for the first and fifth sections in Figs. iv.7a and iv.7b.

We report in Table iv.6 the results for the short-term fluctuations and long-term drift. The
numbers are higher than for dhfr which can be explained by the use of polarisation and the fact
that the molecule was from the Proteins Data Bank and not from a system in TINKER, which may
be less suitable for molecular dynamics. However, the results show that we can obtain similar
conservation results as the dhfr protein, even for a random system in the Proteins Data Bank,
which shows some robustness of the fast multipole method.

Table iv.6: Short-term fluctuations and long-term drift in kcal/mol for the total energy for different
sections of the dronpa protein with polarisation for 1.0 picosecond molecular dynamics
with 0.1 femtosecond time-steps

system parameters stf ltd
First section (iv.7a) (6, 12.0) 1.5 −3.8 × 10−2(8, 8.0) 1.5 −6.5 × 10−3
Second section (6, 12.0) 2.4 −8.7 × 10−1(8, 8.0) 2.4 −5.7 × 10−1
Third section (6, 12.0) 3.0 2.2 × 10−1(8, 8.0) 3.0 1.6 × 100
Fourth section (6, 12.0) 3.5 1.2 × 100(8, 8.0) 3.6 −6.1 × 10−1
Fifth section (iv.7b) (6, 12.0) 3.3 −8.8 × 10−1(8, 8.0) 3.3 6.1 × 10−1

IV.E.4 Solvatedmolecular systems

Finally, we look at results where a solvent, in this case water, is used. First, with explicit water
molecules that are treated as any other atoms, using the amoeba force field; and next with implicit
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Figure iv.7: Energy conservation for the first (left) and fifth (right) sections of the dronpa protein
with polarisation and with 0.1 femtosecond time-steps. The curve in black is with
parameters (ℓ, 𝐵) = (6, 12.0) and in blue with (8, 8.0).

water molecules using ddcosmo [CMS13]. Both descriptions have thus a linear computational
complexity, as ddcosmo is a linear implementation of the cosmo [KS93] method.

Molecular dynamics with explicit solvent

In Fig. iv.8, we present results of a molecular dynamics for the solvated dhfr protein. It is
solvated with 7023 water molecules, which amount to a system of 23 558 atoms in total. We
chose two different tolerance parameters of 10−5 and 10−8 for polarisation with 0.25 femtosecond
time-steps. To prevent the water molecules from going away, we used a spherical droplet restraint
between atoms of 100 ångströms.

For parameters (ℓ, 𝐵) = (8, 8.0), as we expect the system to have a drift, as it was already
the case when dhfr was not solvated, we first heated it to 300 kelvins for 10 picoseconds.
The geometry for parameters (ℓ, 𝐵) = (6, 12.0) was the one given in TINKER, hence the large
fluctuations at the beginning of the simulation, which are due to the increase of temperature at
the beginning. The short-term fluctuations and long-term drift for the energy are also reported
in Table iv.7.

There is a clear drift that is present in every cases. However, as it did not exist when dhfr was
not solvated for (ℓ, 𝐵) = (6, 12.0) we think it is mostly due a system that is not well behaved.

Molecular dynamics with implict solvent

To obtain physical properties from amolecular dynamics, we have to sample enough configurations
of the molecular system of interest. However, explicit solvent means that lots of dynamic steps will
only serve to sample the solvent. Implicit solvation may decrease the simulation time necessary
to obtain physical quantities by making use of collective variables for the solvent. As a proof
of concept, we used this method for the first section of the dronpa protein, which is shown in
Fig. iv.9 for an order ℓ = 8 using the cosmo model and 1.0 femtosecond time-steps. Even though
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(b) Parameters (ℓ, 𝐵) = (8, 8.0) and0.25 femtosecond time-steps.

Figure iv.8: Solvated dhfr with polarisation. The computation was done on 48 processors using
a spherical droplet restraint between atoms of size 100 ångströms. The curves in
black are for a convergence for polarisation of 10−8 and the ones in blue for 10−5.

Table iv.7: Short-term fluctuations and long-term drift in kcal/mol for the total energy of solvated
dhfr for molecular dynamics with 0.25 femtosecond time-steps

tolerance parameters stf ltd length
10−5 (iv.8a)† (6, 12.0) 3.4 × 10−1 1.8 2910−8 (iv.8a)† (6, 12.0) 3.4 × 10−1 1.3 2310−5 (iv.8b) (8, 8.0) 2.1 × 10−1 1.2 2410−8 (iv.8b) (8, 8.0) 2.1 × 10−1 1.5 20

†Due to fluctuations, we do not account for the first picosecond of com-
putations.
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its complexity is linear in the number of particles, the computations are slow to perform. Hence,
we did not use a box size as before, but we fixed the height of the hierarchical tree to five, to
be able to use more computer nodes. We see that there is a clear drift in the energy, which may
be due to the use of a fixed level which cannot take into account particles’ densities, or even to
a deficiency of the preparation of the molecule. For example, the minimisation and canonical
ensemble molecular dynamics were not performed using implicit solvent, and as we took directly
the dronpa protein from the Proteins Data Bank, the molecule may have needed more preparation.
Moreover, at the time of the computations, the cosmo model used in TINKER had no particular
parameterisation; hence its use as a proof of concept.
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Figure iv.9: Energy drift for the first section of the dronpa protein with polarisable continuum
model for parameters (ℓ, lv) = (6, 5) with 1.0 femtosecond time-steps

In this chapter, we have shown that the fast multipole method should be sufficiently robust to
be used for molecular dynamics of molecular systems. Depending on the need for accuracy, some
fixed parameters for the expansion order and box size seem to give similar results for different
systems, which limits the effort to tune them. Hence, it is an alternative worth considering with
respect to particle mesh Ewald. This is especially true for very large simulations, where the
higher than linear computational complexity of particle mesh Ewald in 𝑁 log𝑁 may start to
impair results. However, more research should be done to compare the physics that can be obtain
when using fast multipole method, as the particle mesh Ewald can take advantage the side-effect
of modelling a larger amount of solvent due to its periodic boundary conditions.
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V.A Problem setting

In this chapter, we consider a system with 𝑀 nuclei and 𝑁 electrons described by a linear
Hamiltonian ℋ = 𝒯 + 𝒱, (i.1)
where 𝒯 is the kinetics energy operator and 𝒱 is the Coulomb operator.

The operator 𝒱 can be split into an interaction operator between nuclei and electrons and one
between electrons 𝒱 = 𝒱ne + 𝒱ee, which gives

ℋ = 𝒯 + 𝒱ne + 𝒱ee. (i.2)

If we use the Born–Oppenheimer [MH09] approximation, that is that we consider the nuclei
to be classical particles, the problem is then transformed into the following eigenvalue problem

ℋ𝜓(𝑟1,… , 𝑟𝑁) = 𝐸0𝜓(𝑟1,… , 𝑟𝑁), (i.3)

where 𝐸0 is the lowest eigenvalue, called the ground state energy (see Section i.d.1).
Due to the cusp of the Coulombic potential, this problem is in general expensive to solve

numerically as we may have to use a large basis set to have accurate results. However, if we
model the interactions between electrons with the operator

𝒱ee(𝜇) = ∑
1≤𝑖<𝑗≤𝑁

erf(𝜇|𝑟𝑖𝑗|)|𝑟𝑖𝑗| , (i.4)

then, the problem can be solved with a smaller basis set for small enough values of 𝜇 > 0. When 𝜇
tends toward infinity, we have the original problem.

The aim of this work is to explore the use of the empirical interpolation method on the family
of operators with multiple values of 𝜇

ℋ(𝜇) = 𝒯 + 𝒱ne + 𝒱ee(𝜇), (i.5)

which gives us a set (𝐸(𝜇))𝜇 of eigenvalues.
The empirical interpolation method was introduced by Barrault et al. [Bar+04] as a way to

efficiently find a reduced basis if a so-called Kolmogorov 𝑛-width is small (see Section vi.a.3
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v.a Problem setting

for more details). The method is empirical in the sense that it gives good results, but cannot be
proven a priori for most problems. The points at which to do the interpolation are quasi-optimal
and are referred as magic points ̧[Mad+09]. They are quasi-optimal in the sens that empirically,
the interpolant should be close to the best results if we hose had the knowledge to choose optimal
interpolation points.

In the supporting article Page 114, we have looked at how to extrapolate the values for the
energy at 𝜇 ≡ ∞ from small values of 𝜇 for small molecular systems of two electrons using a
modification of the empirical interpolation method more suitable for our problem. We have
obtained accurate results using simple analytic basis for the extrapolation.
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Laboratoire de Chimie Théorique (LCT), F-75005 Paris, France

andreas.savin@lct.jussieu.fr

The Kohn–Sham method uses a single model system, and corrects it by
a density functional the exact user friendly expression of which is not
known and is replaced by an approximated, usable, model. We propose to
use instead more than one model system, and use a greedy extrapolation
method to correct the results of the model systems. Evidently, there is a
higher price to pay for it. However, there are also gains: within the same
paradigm, e.g., excited states and physical properties can be obtained.

1. Introduction

1.1. Motivation

Density functional theory (DFT) has a weak point: its approximations

(DFAs). First, the Hohenberg–Kohn theorem tells us that there is a density

functional for electronic systems, F [ρ], that is universal (that is, indepen-
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dent of the potential of the nuclei), but does not give us a hint on how

systematic approximations can be constructed. In practice, models are pro-

duced to be fast in computations, typically by transferring properties from

other systems, like the uniform electron gas. Second, the most successful

approximations are using the Kohn–Sham method (introducing a fermionic

wave function) that decomposes F [ρ] into the kinetic energy, the Hartree

energy and an exchange-correlation energy contribution although the ques-

tion of how and what part of F [ρ] should be approximated is, in principle,

open.

In the present contribution we totally change the paradigm in the fol-

lowing way still led by the issue of universality. Let us start with a physical

consideration. When electrons are close, the Coulomb repulsion is so strong

that some of its features dominate over the effect of the external poten-

tial. This is also reflected mathematically in the short-range behavior of

the wave function, as present in the Kato cusp condition [1, 2, 3, 4], and in

higher-order terms [5, 6]. We further note that approximating numerically

the short-range part of the wave function needs special care, due to the

singularity of the Coulomb interaction when the electrons are close.

The considerations above and the independence of the interaction be-

tween electrons from that between them and the external potential provides

a basis for constructing approximations. Thus, we propose to solve accu-

rately a Schrödinger equation with a Hamiltonian that is modified to elim-

inate the short-range part of the interaction between the electrons which is

one of the difficult parts in the numerical simulations. The way to do it is

not unique, and we try to turn this to our advantage: we use several models,

and from them we try to extrapolate to the physical system [7]. In other

words, we follow an “adiabatic connection” (see [8]), without ever construct-

ing a density functional. This new paradigm thus explores the possibility

to replace the use of DFAs by mathematically controlled approximations:

we make density functional theory “without density functionals.”

Our approach has introduced an additional difficulty nonexistent in the

Kohn–Shammethod: the long-range part of the interaction has to be treated

accurately, and not only its electrostatic component. One may ask whether

this additional effort is justified, and whether one gains anything with re-

spect to a calculation where the physical (Coulomb) interaction is used.

For a single calculation, the gain is due to the lack of singularity in the

interaction expressed by a weak interaction potential allowing for simpli-

fied treatments, such as perturbation theory. However, as the extrapolation

to the physical system needs more than one point, it is essential that the

number of points stays very small, and the interaction weak.

FLEIM for Electronic Hamiltonians

115



FLEIM for electronic Hamiltonians 3

1.2. Objective and structure of the paper

We first choose, in Sec.2.1, a family of model (parameter dependent) Hamil-

tonians that are more flexible than using only the Kohn–Sham (noninteract-

ing) Hamiltonian.∗ This is followed by a description of how universality is

introduced, namely by analyzing how a nonsingular interaction approaches

the Coulomb one, and not by transfer from other systems, as usually done

in DFAs. The physical system of interest is one among the parameter de-

pendent models corresponding to some precise value of the parameter; in

Sec. 2.2 its solution is extrapolated from the solutions to the models for

other values of the parameter, expected that these solutions are more simple

to be approximated. This extrapolation is efficiently handled in the general

framework of the model reduction methods and more precisely referring to

a variation of the Empirical Interpolation Method [9].

We believe that such an approach can not only discuss what DFAs are

really doing, but can evolve to being used in applications. Some argument

supporting this statement is given. However, in this paper numerical ex-

amples (gathered in Sec. 3) are only presented for two-electron systems

that are numerically (and sometimes even analytically) easily accessible:

the harmonium, the hydrogen anion, H–, and the hydrogen molecule, H2 in

the ground state, at the equilibrium distance.

As we do not use the Hohenberg–Kohn theorem, the technique can be

applied without modification also to excited states. We provide in Sec. 3.5,

as an example, the first excited state of the same symmetry as the ground

state.

Some conclusions and perspectives are presented in Sec. 4. Finally, in

order to facilitate reading the manuscript, various details are given in Ap-

pendices A–E that follow Sec. 4.

2. Approach

2.1. The model Schrödinger equation

We study a family of Schrödinger equations,

H(µ)Ψ(µ) = E(µ)Ψ(µ), (2.1)

∗Note however that this is at the prize of working in R
3N instead of R

3, and thus

requiring accurate many-body, e.g., configuration interaction calculations.
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where µ is some nonnegative parameter. More precisely, in this paper, we

use

H(µ) = T + V +W (µ), (2.2)

where T is the operator for the kinetic energy, V is the external potential (in

particular that of the interaction between nuclei and electrons) and W (µ)

represents the interaction between electrons. Although not required by the

general theory, in this paper we introduce the dependence on µ only by

modifying the interaction between electrons,

W (µ) =
∑

i<j

w(rij , µ), (2.3)

choosing

w(rij , µ) =
erf(µrij)

rij
(2.4)

where rij = |ri − rj | is the distance between electron i (at position ri) and

electron j (at position rj). Finally, the external potential V is written like

V =
N
∑

i=1

v(ri). (2.5)

where v is the local one particle operator. Note that the N -particle opera-

tors are denoted by upper case letters, while the one-particle operators are

denoted by lower case letters.

Note also that for µ = 0 we have a trivial noninteracting system, while

for µ = ∞ we recover the Coulomb system. The operator w is long-ranged:

as µ increases, the Coulomb interaction 1/r12 starts being recovered from

large distances. The first reason for this choice is that, as mentioned above,

we expect a universal character for short range (this is related to the dif-

ficulty of common DFAs to correctly describe long-range contributions, cf.

Appendix A). The second reason is that the solution of Eq. (2.1) is con-

verging more rapidly with (conventional) basis set size when the interaction

has no singularity at r12 = 0.

In principle, introducing a dependence of the one-particle operators (T

and V ) on µ makes the formulas a bit more clumsy, but does not introduce

important difficulties in its application. Using such a dependence might

improve the results, but it is not discussed in this contribution. In the

following, in order to simplify notation, we drop the argument µ, when

µ = ∞, e.g., E = E(µ = ∞).

FLEIM for Electronic Hamiltonians
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2.2. The correction to the model

2.2.1. Using a basis set

Of course, solving the Schrödinger equation for the model, Eq. (2.1) with

finite µs, does not provide the desired solution, i.e., the one that is obtained

for µ = ∞. We thus need to estimate the difference in eigenvalues:

Ē(µ) = E − E(µ). (2.6)

Since Ē(µ) tends to zero at infinity, the idea is to first expand this difference

Ē(µ) in a basis (of functions that tend to zero at infinity), retaining M

terms,

Ē(µ) ≈ ĒM (µ) =
M
∑

j=1

cjχj(µ), (2.7)

leading to

E(µ) ≈ E −
M
∑

j=1

cjχj(µ),

or, more precisely since E is not known, we replace it by an approximation

denoted as EM ,

E(µ) ≈ EM −
M
∑

j=1

cjχj(µ). (2.8)

The idea then proceeds by determining the unknown EM values and the

coefficients ci from M +1 values of E(µm), for m = 0, . . . ,M for an appro-

priate choice of the parameter values µm. Finally, taking into account that

the functions χj tend to zero at infinity, the proposed approximation for

E is EM . Of course, this extrapolation approach often fails if care is not

enough taken in the choice of the functions χj , 1 ≤ j ≤ M , and the values

µm, for m = 0, . . . ,M .

First, one has to decide about their form. Second, one has to find a

way to keep M as small as possible to reduce computational cost while

preserving a good accuracy.

2.2.2. Approaching the Coulomb interaction

As recalled above, we derive from the leading term of the Coulomb interac-

tion between the electrons that, to leading order, the solutions of differential
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equations are determined at short range by the singularities. The interac-

tion w in Eq. (2.4) has no singularity at r12 = 0, for any finite µ. However,

as the parameter µ increases, w(·, µ) approaches the singular Coulomb po-

tential.

In order to see how this limit is approached, let us perturb the exact

solution. To first order, the perturbation correction to the energy is given

by

Ē(µ) =
〈

Ψ
∣

∣

(

W −W (µ)
)∣

∣Ψ
〉

, for µ → ∞. (2.9)

By changing the integration variables ri to µri we see that

Ē(µ) ∝ µ−2 as µ → ∞, (2.10)

providing a leading behavior that we want the basis functions χi to re-

flect. It is possible to continue this analysis for higher order terms. In fact,

the next term (in µ−3) has a coefficient proportional to that of µ−2, the

proportionality coefficient being determined by the nature of the Coulomb

singularity [10].

2.2.3. Choice of the basis functions

In the main part of this contribution we use a simple ansatz,

χ̃j(µ) = 1− j µ(1 + j2 µ2)−1/2, j = 1, . . . ,M, (2.11)

that respects indeed the condition of Eq. (2.10). The motivation for this

specific choice, that is arbitrary to a certain degree, as well as some results

obtained with other choices of basis functions, is given in Appendix B.

The first functions of this basis set are presented in Fig. 1, together

with an example of a function it has to approximate. It illustrates that the

function we want to describe is between basis function χ̃2 — for small µ —

and basis function χ̃3 —for large µ. However, a simple linear combination

between these (only) two surrounding basis functions from the family in

Eq. (2.11) does not improve much the accuracy, but of course, more (and

more appropriate) functions in the family can (and should) be called.

2.2.4. Reducing the basis set

Using a large set of χj (a large M) can rapidly become computationally

prohibitive (because it requires a large number of evaluations of E(µm),

for m = 0, . . . ,M) and numerically unstable (because it is classically much

more difficult to stabilize extrapolation than interpolation). In order to
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Fig. 1. Basis functions χ̃j of Eq. (2.11), continuous curves with the color corresponding

to j; and an (unknown) function to be approximated by linear combination on this

basis (dot-dashed, gray). The unknown function in this figure is proportional to Ē(µ) of
harmonium.

reduce their number and increase the stability of the extrapolation, we

use a greedy (iterative) method, as in the Empirical Interpolation Method

(EIM) leading to proper choices of µm, for m = 0, . . . ,M known as “magic

points.”

In theKth iteration of EIM, one starts from a set ofK−1 basis functions

(for us, χ̃j) and K − 1 points (for us, µ̃j belonging to some (discretized)

interval, say, close to zero, to benefit at most of the regularization of the erf

function). One then chooses the Kth function χ̃K−1 (among the remaining

M −K basis functions) as being the one that is most poorly approximated

by the current interpolation (based on the K − 1 basis functions and the

K−1 points) in a sense dedicated to the final goal we want to achieve (that

can be uniform error, error on some part of the domain, or even at some

value) and the Kth point µ̃K−1 that, in the admissible set, brings the more

information. In this contribution, as we are only interested at extrapolating

the value of µ at infinity, so we chose the error as the absolute value of

difference between the Kth basis function and its interpolant at infinity as

the final goal we want to achieve.

Note that the procedure selecting the next point and function does not

make any use of the function to be approximated (here Ē). It is thus a cheap

step compared with the calculation of E(µ̃m) on the system of interest.

Chapter v Extrapolation using the magic points method
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8 Étienne Polack, Yvon Maday, and Andreas Savin

To improve the results for the extrapolation, we have modified the EIM

algorithm into what we call the Forward Looking EIM (FLEIM). While

EIM tries to get the maximal improvement through a sequential choice of,

first the new basis function, then the new point of interpolation, FLEIM

tries to get the best pair for improvement in the selected goal. The method

is explained in more detail in Appendix C. In what follows, we present the

results of FLEIM as they are better and more stable than those of EIM, as

is illustrated in App D.1.

2.3. Computing other physical properties

FLEIM can be used to approximate other physical properties, i.e., correct

expectation values of operators A 6= H obtained with the model wave func-

tions, Ψ(µ),

A(µ) = 〈Ψ(µ)|A|Ψ(µ)〉. (2.12)

This can be seen immediately by noting that the derivation in Sec. 2.2.1 is

not specific for correcting E(µ), but can also be applied to A(µ).

For the choice of the basis functions, we point out that properties are

obtained by perturbing the Hamiltonian with the appropriate operator, say,

A,

H → H(λ) = H + λA. (2.13)

The expectation value of A can be obtained as the derivative of E(λ) w.r.t.

λ, at λ = 0. Of course, this procedure can be applied to model Hamiltonians,

yielding E(λ, µ) and

〈Ψ(µ)|A|Ψ(µ)〉 = ∂λE(λ, µ)
∣

∣

λ=0
(2.14)

Thus, in this contribution, we use the same type of basis functions for A(µ)

as for E(µ); see the results in Sec. 3.4. Note that computing 〈Ψ(µ)|A|Ψ(µ)〉
is not possible in DFT, without having a property-specific density func-

tional [11].

3. Numerical results

3.1. Guidelines

The quality of the corrections using Eqs. (2.7) and (2.11) is explored nu-

merically. Technical details on the calculations are given in Appendix D.
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The plots show the errors done by the approximations in the estimate

of the energy: we choose a model, µ 7→ E(µ), and let the empirical inter-

polation method choose which easier models (with weaker interactions) to

extrapolate and get an approximation for E = E(µ = ∞). The plots show

the error in the estimate of E made when considering approximations that

use information only for µ̃m ≤ µ. From the plots, we read off how small µ

can be and still have “reasonable” accuracy. In thermochemistry, kcalmol−1

is a commonly considered unit, and is often considered as “chemical accu-

racy.” For electronic excitations, one often uses eV units, and one often

indicates it with one decimal place. “Chemical accuracy” is marked in the

plots by horizontal dotted lines. The plots show the errors in the range of

±0.1 eV ≈ 2.3 kcalmol−1.

We consider approximations using up to four points (thus chosen in

[0, µ]). The first point µ0 is always the value chosen µ0 = µ shown on the x-

axis of the plots, and the basis function associated to it is χ̃0, the constant

function; note that using only this pair (χ0, µ0) corresponds to choosing

E ≃ E(µ0)= the value provided by the model, i.e., no correction is applied.

When the number of points is increased, further values of E(µ̃m), chosen

by the algorithm, are used with µ̃m < µ.

The (maximal) parameter µ is considered between 0 and 3 bohr−1. The

model without correction (blue curve) reaches chemical accuracy for µ ≈
3 bohr−1 for H– and harmonium, but only at µ ≈ 5 bohr−1 for H2 in its

ground state.

3.2. General behavior of errors

The plots in Fig. 2 for harmonium, H2, and H– have similar features and

are discussed together. As the number of points used increases, the smallest

value of µ for which the good accuracy is reached decreases. Note that

FLEIM produces very small errors for values of µ larger than 2. However,

with the chosen basis set, the algorithm presented in this contribution has

difficulties correcting the errors for µ smaller than 1.

3.3. Possibility of error estimates

Some tests can be done to estimate the quality of the approximation. For

example, we can compare how the approximations change when increas-

ing the number of basis functions, K, in our approximation and consider

|EK − EK−1| as an asymptotically valid error estimate for EK−1. One can

notice in the above figures that, when the difference between, say, the 2-
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H2 (Re)
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Fig. 2. Errors for harmonium (top), H2 (middle), and H– (bottom) using FLEIM with
one to four points (1: blue curve, 2: brown curve, 3: green curve, 4: red curve). The
abscissa represents the biggest µ allowed for use in the FLEIM algorithm. The error of

the model without correction (blue curve) does not show up in the figure for the H2

molecule because it is larger than the domain covered by the plot.
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Harmonium (ω = 1/2) FLEIM

Fig. 3. Errors made for the expectation value of the distance between electrons (top)

and the distance squared (bottom) for harmonium, by using a model wave function,
Ψ(µ), and after correcting with FLEIM (the different curves correspond to the number

of points used). The insets zooms in.

and the 3-point approximation error is larger than “chemical accuracy,” so

is the error in the 2-point approximation.
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12 Étienne Polack, Yvon Maday, and Andreas Savin

3.4. Expectation values with FLEIM: 〈r
12
〉 and 〈r2

12
〉 for

harmonium

We look at the average distance between the electrons in harmonium. Fig-

ure 3(top) shows the error made by using Ψ(µ) instead of Ψ(µ = ∞) in

computing the expectation value of r12, as well as the correction that can

be achieved with FLEIM, using the same basis set as above (2.11). The

inset in Figure 3(top) concentrates on the errors made in the region that

could be considered chemically relevant (1 pm ≈ 0.02 bohr). We note the

similarity with the behavior of in correcting E(µ).

Let us now examine the average square distance between the electrons,

〈r212〉, in harmonium. While for computing the energy we explored correcting

the missing short-range part of the interaction, we now ask whether it is

possible to correct the error of using the model wave function, Ψ(µ) for the

expectation value of an operator that is important at long range.

For ω = 1/2, we know the exact values of the expectation value of r212
at µ = 0 and µ = ∞; they are 6 and (42

√
π + 64)/(5

√
π + 8) ≈ 8.21,

respectively (see, e.g., Ref. [12]). Note the large effect of the model wave

function, Ψ(µ), in computing 〈r212〉. Figure 3(bottom) shows the error made

by using Ψ(µ) instead of Ψ(µ = ∞) in computing the expectation value of

r212, as well as the effect of the correction that can be achieved with FLEIM,

using the same basis set (2.11) as above. We note again the similarity with

the behavior of in correcting E(µ) or the expectation value of the distance

between electrons.

The expectation value 〈r212〉 also illustrates another aspect: the effect of

a change of the external potential on the energy. At first sight this may

seem surprising, as the external potential is a one-particle operator, while

r212 is a two-particle operator. However, changing the one-particle operator

also modifies the wave function and this affects the value of 〈r212〉. In the

case of harmonium, this can be shown analytically. Changing r1 and r2 to

center-of-mass, R, and inter-particle distance, r12, cf. Appendix E, allows

us to see explicitly that a modification of ω2, the parameter that specifies

the external potential, affects the Schödinger equation in r12. It introduces

a term proportional to ω2r212. The first order change in the energy when we

change the external potential (ω2) is thus proportional to 〈r212〉. Our results

in Fig. 3(bottom) show that our conclusions on model corrections are not

modified by small changes in the external potential. Note that the center-

of-mass Schrödinger equation also depends on ω2, but it is independent of

µ and thus does not affect our discussion on model correction.
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3.5. Comparison with DFAs

Instead of using extrapolation with FLEIM, one can use DFAs. While up

to now the external potential did not change with µ, in DFA calculations

a one particle potential that depends on µ is added in order to correct the

density.

We consider here two DFAs, the local density approximation,

LDA [13, 14], and one that reproduces that of Perdew, Burke and Ernz-

erhof (PBE) [15, 16] at µ = 0. Both approximations are modified to be

µ-dependent. In particular, they vanish at µ = ∞.

As shown in Fig. 4(top) for harmonium, DFAs are clearly much better

at small µ. However, they are not good enough. The figure suggests the

range of µ for which DFAs are within chemical accuracy is similar to that

obtained with the 3-point FLEIM. This is confirmed when comparing the

results with DFAs and for the H2; see Fig. 4(middle). Note that with FLEIM

the errors at large µ are smaller.

Note also that the curves obtained with extrapolation are significantly

flatter at large µ than those obtained with DFAs. This should not be sur-

prising: DFAs transfer the large µ behavior, while extrapolation extracts it

from information available for the system under study.

Furthermore, using ground-state DFAs for excited states does not only

pose a problem of principle (questions its validity, as the Hohenberg–Kohn

theorem is proven for the ground state), but can also show a deterioration

of quality. However, there is no question of principle from the perspective

of this contribution (of using a model and correcting it by extrapolation).

Also, the error in the excited state seems comparable to that in the ground

state, as seen in the example of the H2 molecule, in the first excited state

of the same symmetry as the ground state; see Fig. 4(bottom).

4. Conclusion and perspectives

In this contribution we have illustrated with a few models how to simplify

the Hamiltonians by smoothly getting rid of the singularities in the system

and thus have more numerically tractable problems. This simplification is

obtained by introducing a parameter that, when it is equal to infinity, it cor-

responds to the original, plain Hamiltonian. After numerically solving a few

simplified problems, the solution of interest is obtained by extrapolation.

We present a new (in the field) method for extrapolating the quantities

of interest from few finite values (hence easy to solve) of the parameter by

a technique borrowed from reduced basis paradigm: the empirical interpo-
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Fig. 4. Absolute errors for the harmonium molecule at equilibrium distance (top), for
the H2 molecule at equilibrium distance (middle), and in the first excited state of the
same symmetry as the ground state (bottom): a µ-dependent LDA (black dashed curve),

combined with the a µ-dependent Perdew–Burke–Ernzerhof approximation (PBE, gray

dashed curve), FLEIM (3 points) (green curve), combined with a µ-dependent local
density approximation. The abscissa represents the biggest µ allowed for use in the

FLEIM algorithm. The insets zoom into the regions of small errors, the dotted line
corresponding to the value of “chemical accuracy.” Note the different ranges for ∆E.
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lation method. In contrast to DFAs, no parameters are fitted, no transfer

from different system are made: only extrapolation is used. Note that in

contrast to DFAs, improvement can be envisaged by either adding further

points or using more appropriate basis functions and error estimates are

asymptotically accessible.

Appendices

A. On density functional approximations

In DFT, the existence of a universal functional of the density, F [ρ], i.e.,

the Hohenberg–Kohn theorem [17], is rigorously proven [18, 19]. However,

obtaining accurately the value of F for a given density ρ(r), while possible

(see, e.g., Ref. [20]), is exceedingly time-consuming. Computationally con-

venient DFAs exploit the knowledge of the density around a given point r

in space. Typically,

F [ρ] ≈
∫

R3

f (ρ(r), |∇ρ(r)|, . . . ) dr . (A.1)

The limitation of such an approach can be seen for a simple density

functional, the Hartree term of the energy,∗

EH [ρ] =

∫

R6

ρ(r1)ρ(r2)

|r1 − r2|
(A.2)

when ρ(r) = ρA(r) + ρB(r) and ρA(r)ρB(r) ≈ 0 (i.e., ρA and ρB are spa-

tially separated; their overlap decreases much faster than 1/|r1 − r2|). Ho-
henberg and Kohn recognized the difficulty of approximating EH by ex-

pressions of the type given in Eq. (A.1) and suggested separating it from

F [ρ]. However, this does not fundamentally solve the problem, as one can

immediately see in one-electron systems, where EH has to be canceled by

another term commonly expressed in DFAs by an ansatz of the forms given

in Eq. (A.1). Note, that the problem would not exist for interactions that

are not Coulomb (long-ranged), but short-ranged. For instance, if the in-

teraction is Dirac’s δ(r1 − r2) function, EH becomes exactly of the form

of Eq. (A.1). For other short-range interactions one can approach such a

form by using Taylor expansions. In recent years it has become popular to

compensate for the limitation of the ansatz in Eq. (A.1) by adding “empir-

ical” energy corrections to describe long-range effects.

∗The volume elements dr
1
dr

2
are omitted when the context is unambiguous.
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Another problem is that the antisymmetry of the electronic wave func-

tion is hidden in F [ρ]. As the most important effect of the antisymmetry

is the Pauli repulsion, Kohn and Sham [21] proposed to consider the vari-

ational principle for a model in which particles do not interact. However,

DFAs following the pattern of Eq. (A.1) are still in use. In fact, further

separating terms from F [ρ] may even lead (for degenerate cases) to the

question whether the limit of a noninteracting system is well-defined (see,

e.g., Sec. 3.5 in [13]).

B. Basis functions

In order to get an idea how the leading term of the correction behaves, we

consider the missing part of the Hartree term,

〈

Ψ(µ)
∣

∣

(

W −W (µ)
)
∣

∣Ψ(µ)
〉

=
1

2

∫

R6

ρ(r1)ρ(r2)

(

1

r12
− w(r12, µ)

)

. (B.1)

Separating the Hartree part from F [ρ] was already proposed by Ho-

henberg and Kohn [17], and it is also the dominant part in Ē(µ). Most

molecular codes use Gaussian one-particle basis functions, so ρ is a linear

combination of Gaussian functions. We consider a generic term,
∫

R6

e−αr2
1e−αr2

2

(

1

r12
− w(r12, µ)

)

. (B.2)

This integral is easily computed, e.g., by using Fourier transforms, and one

obtains an expression that is proportional to the form of the basis function

χ̃j in Eq. (2.11), after arbitrarily relating 1/α2 to the basis index j.

Let us now consider another basis set, constructed from the requirement

that the functions decay as µ−2 and are finite at the origin.

χ̃1,j(µ) =
(

1 + (j µ)2
)−1

(B.3)

where we choose again j = 1, 2, . . . , 10. The results are only slightly

worse than those obtained when using the basis set of Eq. (2.11), compare

Fig. 2(top) and Fig. 5(top).

Let us consider

χ̃2,j(µ) = ajµ
(

1 + (aj µ)
3
)−1

(B.4)

where we choose aj = 2j/2. The result for harmonium is shown in Fig. 5(bot-

tom). We note a slight improvement of the results for the 2- and 3-point

approximations, as well as a change of sign of the error in the 4-point ap-

proximation. This direction of investigation deserves to be pursued.
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Fig. 5. Errors for harmonium using FLEIM with up to four points (1: blue curve, 2:

brown curve, 3: green curve, 4: red curve), using the basis sets given in (B.3) (top) and
(B.4) (bottom). The abscissa represents the biggest µ allowed for use in the FLEIM

algorithm.

C. The empirical interpolation method

The empirical interpolation method is a model-order reduction method in-

troduced in [9] as a way to efficiently find a reduced basis and approximate

one particular function within a manifold of parameter dependent func-

tions. The points at which to do the interpolation are referred as magic

points [22].

For a family of basis functions χi , i ∈ I with discrete points µj , j ∈ J

chosen on a regular grid close to zero (see Appendix D.2 for an analy-
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sis of the influence of the choice of the grid), we want to find a family

of K functions and interpolation points with which to interpolate a test

function f ∈ Span{χi , i ∈ I}.

C.1. Algorithm for EIM

We assume that we have chosen some cost function C, e.g., a norm C[·] ≡ ‖·‖,
or, if we are, as in this contribution, only interested in correctly approxi-

mating the value for µ ≡ ∞, we choose the cost function as the absolute

value at that extrapolation point C[ϕ] = |ϕ(∞)| = limµ→∞ |ϕ(µ)|.
First, select one of the basis functions. We can choose to add the con-

stant function χ0,

χ̃0
:= χ0. (C.1)

We then select the first interpolation point as the largest admissible µ

available,

µ̃0 := max
j∈J

µj . (C.2)

We can then define the first normalized interpolation function as

q0 :=
χ̃0

χ̃0(µ̃0)
. (C.3)

We can then create the first approximation with an interpolation scheme,

for instance Lagrangian interpolation as

I0[f ] := f(µ̃0)q0. (C.4)

We now assume to have chosen K−1 functions χ̃k, normalized functions

qk. Let us also assume that we have selected K− 1 interpolation points µ̃k,

k = 0, . . . ,K − 2. We define the IK−2 Lagrangian interpolation function as

IK−2[f ] :=
K−2
∑

k=0

βkqk, (C.5)

where the coefficients βk are determined by solving the system

K−2
∑

k=0

βkqk(µ̃ℓ) = f(µ̃ℓ) for ℓ = 0, . . . ,K − 2. (C.6)

If we denote Ĩ as the set of indices of remaining basis functions and J̃

as the set of indices of remaining interpolation points, we choose the next

function as

χ̃K−1
:= argmax

χ
i
, i∈Ĩ

{

C
[

χi − IK−2[χi ]
]}

, (C.7)
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and the next interpolation point as

µ̃K−1 := argmax
µj , j∈J̃

{∣

∣χ̃K−1(µj)− IK−2[χ̃K−1](µj)
∣

∣

}

. (C.8)

We can then define the Kth normalised interpolation function as

qK−1 :=
χ̃K−1 − IK−2[χ̃K−1]

χ̃K−1
(µ̃K−1)− IK−2[χ̃K−1

](µ̃K)
. (C.9)

This system is represented by a lower triangular matrix with ones on the

diagonal, and hence has a unique solution. The algorithm ends when the

desired target accuracy is reached.

C.2. The forward looking empirical interpolation method

(FLEIM)

To better adapt the method for extrapolation, we propose a double loop

alternative: Instead of selecting sequentially first for a new basis function

and then a new interpolation point — Eqs. (C.7) and (C.8) — we select

the best pair

(χ̃K−1, µ̃K−1) := argmax
χ
i
, i∈Ĩ

argmin
µj , j∈J̃

{

C
[

χi(µj)− IK−2[χi ](µj)
]}

. (C.10)

D. Numerical details of the calculations

D.1. Testing EIM and FLEIM with E(µ) = 1 + χj(µ)

In this subsection, we compare on a simple function, the behaviour of EIM

and FLEIM on a analytic test function E(µ) behaves like 1 + χj(µ). The

results for EIM are given in Fig. 6, and for FLEIM, in Fig. 7.

First, we note that FLEIM provides better approximation together with

more stable results when µ varies. Second, we note that the “wall” for j > 1

at small µ is also imporved. At large µ, all χj have the same decay at large

µ: this makes both methods fit to work in this regime.

D.2. Discretization for FLEIM

The interval between 0 and the value of µ under study was divided in 10

equal intervals (producing 11 points). FLEIM was used to select K(≤ 4)

points and basis functions on which E(µ) was calculated.

We now investigate the effect of changing the grid of µ and use, for

comparison a fixed finer grid of values of µ1, µ2, . . . ranging from 0 to the
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value µ indicated in the plots, with a step of 0.01 bohr−1, the FLEIM results

are only slightly changed, as shown in Fig. 8.

D.3. Systems

Two-electron systems studied are

(1) harmonium, having

v(r) =
1

2
ω2r2 (D.1)

where for ω = 1/2 the exact energy is known (E = 2hartree);

(2) H– anion,

v(r) = −1

r
; (D.2)

(3) H2 molecule,

v(r) = − 1

|r −RA|
− 1

|r −RB |
(D.3)

where the nuclei are in the equilibrium position, RA = −RB with

|RA| = 0.7 bohr.

D.4. Obtaining the model energy

In order to simplify the test of FLEIM, E(µ) was pre-calculated for a dense

range of values µ and interpolated. The values for E(µ) were obtained with

the program Molpro [23] for H– and H2. This program was also used for

the density functional calculations.

For harmonium, it is possible to separate the variables in the Schrö-

dinger equation. The center-of-mass equation can be solved exactly. The

equation in r12 was solved by discretization on a grid of 104 points between

0 and 10 bohr.

For H2 the V5Z basis set of [24] was used; for H– the aug-V5Z basis set

of [25]. (The error in the energy of H– is too large if we do not augment the

V5Z basis set with a diffuse basis function.) The aug-V5Z basis set was also

used for the excited state of H2, as it has an important contribution of ionic

states (H+· · ·H–). For H2 the equilibrium distance of 1.4 bohr was chosen for

the ground state. For the excited state, the distance of 4.2 bohr was chosen.

It is close to a minimum of the potential energy curve. Furthermore, this

value can be compared with the accurate calculation of Ref. [26].
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Fig. 8. Results using a denser grid (lighter colors), for harmonium, H2 at equilibrium
distance, and H–; the curves obtained with the denser grid are shown in lighter colors.
The error of the model without correction (blue curve) does not show up in the figure

for the H2 molecule because it is larger than the domain covered by the plot.
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E. Change of coordinates in harmonium

Harmonium is characterized by the external potential given by Eq. (D.1).

For two particles the variables r1, r2 can be changed to those corresponding

to the center of mass and the distance between particles,

R =
1

2
(r1 + r2) ,

r12 = (r1 − r2) (E.1)

yielding for the potential energy

1

2
ω2

(

r1
1 + r2

2

)

= ω2

(

R2 +
1

4
r2
12

)

(E.2)

The transformation of variables can be done also for the kinetic energy, and

makes the model Schrödinger equation separable into a part (in R) that is

independent of the model, and one (in r12) that through 2.4 depends on

the model (µ).

Note that 〈Ψ(µ)|r212|Ψ(µ)〉 is also measuring the error due to the change

of density with µ, for harmonium

H(µ) = T +
1

2
ω2(r21 + r22) +

erf(µr12)

r12
(E.3)

Indeed, by using the Hellmann–Feynman theorem,

∂

∂ω2
〈Ψ(µ)|H(µ)|Ψ(µ)〉 = 〈Ψ(µ)|1

2
(r21 + r22)|Ψ(µ)〉

= 〈Ψ(µ)|(R2 +
1

4
r212)|Ψ(µ)〉 (E.4)

where R = (r1 + r2)/2. As it is possible to separate variables R and r12 in

the Schrödinger equation,

Ψ(µ) = Ψ(R, r12, µ) = Φ(R)φ(r12, µ) (E.5)

Φ and φ both normalized to one, and

〈Ψ(µ)|1
2
(r21 + r22)|Ψ(µ)〉 =

∫

R3

ρ(r , µ)r2 dr (E.6)

where ρ(r , µ) is the density of the model system, we have

1

4
〈Ψ(µ)|r212|Ψ(µ)〉 =

∫

R3

ρ(r , µ) r2 dr −
∫

R3

|Φ(R)|2R2 dR (E.7)

Note that the change of 〈r212〉 with µ is only due to the change of the density

with µ. Thus, the difference between 1

4
〈Ψ(µ)|r212|Ψ(µ)〉 and 1

4
〈Ψ|r212|Ψ〉 also

indicates how much the density is affected by the model.
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VI.A Problem statement

In this chapter, we look for accurate and efficient ways to compute the quantum mechanics
density of a chosen chemical system that depends on some parameters. For example, we can
consider normal modes of a molecule, positions of its atoms or time during a molecular dynamics
simulation or a geometry optimisation process. This is of interest because often, quantum
mechanics computations are done for same molecular system, but at different geometries. As it
is the case for molecular dynamics or geometry optimisation.

Articles such as ones from Cancès et al. [Can+07] and Maday and Razafison [MR08] hint
that the Kolmogorov 𝑛-width of a family of densities for a chemical system may be small when
considering its positions as parameters (see Section vi.a.3 for a brief description). We should
thus be able to find a smallish reduced basis which will span the space of density matrices of
interest up to some desired numerical accuracy. We also want a method that cheaply evaluates
density matrices for new parameters.

To gain insight in the objects we are studying and to reduce the complexity of the work, we
have looked at the self-consistent field method that arises when doing density functional theory
or Hartree–Fock quantum mechanics computations. The main advantage of this point of view
is that densities that will be obtained by the methods we develop can be used as an initial guess to
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vi.a Problem statement

the self-consistent field algorithm. Thus, we keep usable accuracy to chemists, while decreasing
the cost of the self-consistent field method if the guesses are close to the final density. The longer
goal is to be able to bypass the self-consistent field algorithm altogether and provide directly
correct density matrices, or even physical properties.

We will present the method for Hartree–Fock computations using a linear combination of
atomic orbitals basis set, but everything in this chapter can be used when doing density functional
theory.

We first present a short reminder about the restricted Hartree–Fock method that we intro-
duced in Section i.d.4. Then, we show two applications of the developed method, which enabled
us to reduce the number of self-consistent field iterations.

VI.A.1 Discrete HARTREE–FOCKmethod

We consider the electronic Schrödinger problem for 𝑁 electrons and 𝑀 nuclei. The nuclear
positions 𝑟 ∈ R3𝑀 are parameterised by an implicit (and non-linear) map ℙ ∋ 𝜇 ↦ 𝑟(𝜇) ∈ R3𝑀.
We refer to the bounded domain ℙ ∈ R𝑃 as the parameter domain.

We consider the Hartree–Fock equations. Using a given basis set of dimension 𝒩 within the
linear combination of atomic orbitals framework, the discrete Hartree–Fock energy of the 𝑁
electrons system can be written as finding the minimum of a functional

𝐶𝜇 = argmin𝐶∈ℳ(𝜇) ℰHF𝜇 (𝐶) = min𝐶∈ℳ(𝜇)Tr
(𝐶Tℎ𝜇𝐶 + 12𝐶T𝐺𝜇(𝐶𝐶T)𝐶) , (i.1)

where ℎ𝜇 and 𝐺𝜇 are the customary one- and two-electron operators with respect to the linear
combination of atomic orbitals basis set for the parameter value 𝜇, 𝐶 is the matrix of occupied
orbitals, 𝐷 ≔ 𝐶𝐶T is the density matrix and

ℳ(𝜇) ≔ {𝐶 ∈ R𝒩×𝑁 || 𝐶T𝑆𝜇𝐶 = Id𝑁
}, (i.2)

with 𝑆𝜇 the overlap matrix. We will drop the superscript ⋅HF when there is no possible confusion.
We note that 𝐺𝜇 is a non-linear map.

If we introduce the Fock operator (see Section i.d)

𝐹𝜇(⋅) ≔ ℎ𝜇 + 𝐺𝜇(⋅), (i.3)

then the Hartree–Fockmethod is often rewritten to find the matrix of occupied orbitals𝐶 ∈ ℳ(𝜇)
that minimises the energy

ℰ𝜇(𝐶) = Tr
((ℎ𝜇 + 12𝐹𝜇(𝐶𝐶T)) 𝐶𝐶T

) , (i.4)

or to find the density matrix 𝐷 ∈ �̃�𝑁 ≔ {𝐷 ∈ R𝑁𝑏×𝑁𝑏 || 𝐷T = 𝐷, 𝐷𝑆𝐷 = 𝐷, Tr(𝑆𝐷) = 𝑁} that
minimises

̃ℰ𝜇(𝐷) ≔ Tr
(ℎ𝜇 ⋅ 𝐷 + 12𝐹𝜇(𝐷) ⋅ 𝐷) . (i.5)

We will drop the tilde of the energy and use the same notation for energy functional ℰ applied
either to density matrix or occupied molecular orbitals when there is no possible confusion.
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VI.A.2 Self-consistent field method for HARTREE–FOCK

The self-consistent field method is a class of iterative algorithms used to find the minimum of the
Hartree–Fock energy. The outline of the algorithm is as follow. By writing the Euler–Lagrange
equation, this means trying to find 𝐶𝜇 ∈ ℳ(𝜇) and 𝐸𝜇 ∈ R𝑁×𝑁 that solve the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹𝜇(𝐷𝜇)𝐶𝜇 = 𝑆𝜇𝐶𝜇𝐸𝜇
𝐶T𝜇𝑆𝜇𝐶𝜇 = Id𝑁
𝐷𝜇 = 𝐶T𝜇𝐶𝜇

. (i.6)

We can use a simplified form of the fixed-point algorithm used to solve the system as: First,
choose some 𝐶0𝜇 such that 𝐶0𝜇T𝑆𝜇𝐶0𝜇 = Id𝑁 and construct a sequence

(𝐶𝑛𝜇
)
𝑛∈N that satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹𝜇(𝐷𝑛−1𝜇 )𝐶𝑛𝜇 = 𝑆𝜇𝐶𝑛𝜇𝐸𝑛𝜇
𝐶𝑛𝜇T𝑆𝜇𝐶𝑛𝜇 = Id𝑁
𝐷𝑛𝜇 = 𝐶𝑛𝜇T𝐶𝑛𝜇

, for all 𝑛 ∈ N. (i.7)

The algorithms stops when the residual |𝐶𝑛𝜇 − 𝐶𝑛−1𝜇 | is smaller than a desired tolerance.
For chemical systems, the bottleneck of this method is the evaluation of the Fock matrices. The

first line of the system, the diagonalisation of the Fock matrix, has often a cost that is negligible
compared to it. We note that this still may be true for density functional theory, depending on
the choice for so-called exchange–correlation functional.

Thus, providing an accurate guess to the self-consistent field method can dramatically decrease
the cost to find solutions to the Hartree–Fock problem.

As we have already written, most of the time, this algorithm has to be run sequentially for
the same molecular system, but for a lot of different geometries. However, although much has
been done to develop convergence acceleration techniques for the self-consistent field procedure,
less is known on how to efficiently exploit the abundance of information generated by previous
computations to provide the self-consistent field with a good initial guess.

For example, for geometry optimisation, we may use the density of the precedent step as a
guess. And for molecular dynamics we may do extrapolations on the time-steps for a few previous
positions, or use the Lagrangian extended method, or direct inversion in the iterative subspace.
But those methods never use more than a few consecutive points in the history.

We note that depending on the software that is used, the constrain that 𝐶T𝜇𝑆𝜇𝐶𝜇 = Id𝑁 may not
be imposed at all for the initial guess, or may be partially checked, such as only verifying that the
trace is correct.

VI.A.3 Geometric interpretation

We would like a method that is oblivious to crossings of eigenvalues, as long as no crossing occurs
between occupied and non-occupied orbitals. That is because the pre-processing needed to take
care of those case may considerably slow algorithms, as was the case for [MR08].

Density matrices seem to be good objects to look at with respect to those constraints. Moreover
the property that up to normalisation by 𝑆1/2𝜇 ,

𝑆1/2𝜇 𝐷𝜇𝑆1/2𝜇 ∈ 𝒢𝑟(𝑁,𝒩), (i.8)

where 𝒢𝑟(𝑁,𝒩) = {𝐷 ∈ R𝒩×𝒩 || 𝐷2 = 𝐷, 𝐷T = 𝐷, Tr𝐷 = 𝑁}
(i.9)
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vi.a Problem statement

means that density matrices can be seen as object on a smooth manifold, the Grassman-
nian 𝒢𝑟(𝑁,𝒩), as will be explained below. This implies locally the existence of a diffeomorphism
that transforms the manifold into an affine space, the tangent space, and back. The maps are
known as the Grassmannian exponential and logarithm. This allows us to apply well-known
methods to approximate the elements in the tangent space, and then map back the results to
the manifold. This way, we are assured that the final result is indeed still a density matrix, see
Fig. vi.1 for a schematic description.

𝐷

𝐷0 Γ

T𝐷0𝒢𝑟

𝒢𝑟
Figure vi.1: Schematic illustration of the geometrical setting. We illustrate by the blue hypersur-

face the Grassmannmanifold𝒢𝑟 and by the transparent plane the tangent space T𝐷0𝒢𝑟
to 𝒢𝑟 at 𝐷0. We illustrate the one-to-one relationship between a close density ma-
trix 𝐷 ∈ 𝒢𝑟 and the corresponding vector Γ = Log𝒢𝑟,0𝐷 in the tangent space.

Definitions and properties

We suppose the reader has some notions about differential manifolds. However it is not fully
needed to understand the gist of the method. Most of the definitions and properties can be found
in texts of Edelman, Arias, and Smith [EAS98], Absil, Mahony, and Sepulchre [AMS08],
and Zimmermann [Zim19]. We first start with a few definitions.

Definition vi.a.1 (Grassmann manifold).— The Grassmann manifold (or Grassmannian)𝒢𝑟(𝑘, 𝑛) is the set of all 𝑘-dimensional linear subspaces in R𝑛

𝒢𝑟(𝑘, 𝑛) ≔ {
Span(𝑉) || 𝑉 ∈ R𝑛×𝑘, dim(𝑉) = 𝑘} = {

Span(𝑉) || 𝑉 ∈ R𝑛×𝑘, 𝑉T𝑉 = Id𝑘
}. (i.10)

Definition vi.a.2 (Stiefel manifold (compact)).— The (compact) Stiefel manifold 𝒮𝑡(𝑘, 𝑛)
is the set of all 𝑘-tuples of orthonormal vectors of R𝑛

𝒮𝑡(𝑘, 𝑛) ≔ {𝑉 ∈ R𝑛×𝑘 || 𝑉T𝑉 = Id𝑘
}. (i.11)

Definition vi.a.3 (non-compact Stiefel manifold).— The non-compact Stiefel manifold𝒮𝑡(𝑘, 𝑛) is the set of all 𝑘-tuples of linearly independent vectors of R𝑛

𝒮𝑡(𝑘, 𝑛) ≔ {𝑉 ∈ R𝑛×𝑘 || dim(𝑉) = 𝑘}. (i.12)

The following properties are interesting to have a better understanding of the objects we
manipulate.

Property vi.a.1.— We can identify the Stiefel 𝒮𝑡(𝑘, 𝑛) with the quotient of two orthog-
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Chapter vi Density matrices extrapolation

onal groups 𝒮𝑡(𝑘, 𝑛) ≅ O(𝑛)/O(𝑛 − 𝑘) . (i.13)

Admitted proof. □

Property vi.a.2.— We can identify the non-compact Stiefel 𝒮𝑡(𝑘, 𝑛) with the quotient
of two general linear groups

𝒮𝑡(𝑘, 𝑛) ≅ GL(𝑛)/GL(𝑛 − 𝑘) . (i.14)

Admitted proof. □

Property vi.a.3.— We can identify the Grassmannian 𝒢𝑟(𝑘, 𝑛) with the quotient of the
non-compact Stiefel 𝒮𝑡(𝑘, 𝑛) by

𝒢𝑟(𝑘, 𝑛) ≅ 𝒮𝑡(𝑘, 𝑛)/GL(𝑘) ≅ GL(𝑛)/GL(𝑛 − 𝑘) × GL(𝑘) , (i.15)

or with the quotient of the Stiefel 𝒮𝑡(𝑘, 𝑛) by
𝒢𝑟(𝑘, 𝑛) ≅ 𝒮𝑡(𝑘, 𝑛)/O(𝑘) ≅ O(𝑛)/O(𝑛 − 𝑘) × O(𝑘) . (i.16)

Admitted proof. □

Using the last proposition, for an element 𝐶 ∈ 𝒮𝑡(𝑘, 𝑛), we will denote elements of the Grassman-
nian 𝒢𝑟(𝑘, 𝑛) as [𝐶], and always work with Stiefel elements. In the case of the Grassmannian,
for 𝐶,𝐶′ ∈ 𝒮𝑡(𝑘, 𝑛), [𝐶] = [𝐶′] when Span𝐶 = Span𝐶′. (i.17)

The collection of 𝑁 electrons is characterised by the density matrix 𝐷 = ∑𝑁𝑖=1|𝜓𝑖⟩⟨𝜓𝑖|. This
matrix can be seen as the projection on the eigenspace generated by orthonormal functions 𝜓𝑖,𝑖 ∈ ⟦1 . . 𝑁⟧, i.e., Span ({𝜓𝑖}𝑁𝑖=1

)
. This eigenspace characterises a plane of dimension 𝑁 in the

space of dimension 𝒩. Hence the density matrices can be associated to objects living on the
Grassmannian 𝒢𝑟(𝑁,𝒩).

Property vi.a.4.— We can identify the Grassmannian 𝒢𝑟(𝑘, 𝑛) with the set of rank 𝑘
projectors 𝒢𝑟(𝑘, 𝑛) ≅ 𝒫(𝑘, 𝑛). (i.18)

Admitted proof. □
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We note that given a density matrix, and up to normalisation with the overlap matrix, the
tuple of its eigenvectors is an element of the Stiefel. Moreover, for any element Φ of the
Stiefel 𝒮𝑡(𝑘, 𝑛), ΦΦT is a projector of rank 𝑘. Intuitively, the fact that the eigenvectors are in the
Stiefel and that we have an invariance by the orthogonal group gives us that we are interested
in elements of the Grassmannian 𝒢𝑟(𝑁,𝒩) by the last property.

Formulas

The Grassmannian is a smooth manifold. Thus there exists local diffeomorphisms between
neighbourhoods of any points on the Grassmannian and some affine spaces, their tangent spaces.
This will enable us to do linear approximations in the affine space and map back the results on
the manifold. The map from the Grassmannian to the tangent space is known as the exponential
map and its inverse as the logarithmic map.

Proposition – Definition vi.a.1 (Grassmannian exponential).— Let [𝐶0] ∈ 𝒢𝑟(𝑘, 𝑛)
and Γ ∈ T[𝐶0]𝒢𝑟(𝑘, 𝑛) an element of its tangent space. Then the Grassmannian exponential
of the tangent element Γ to the point [𝐶0] is

Exp𝒢𝑟,[𝐶0] ∶ T[𝐶0]𝒢𝑟(𝑘, 𝑛) ⟶ 𝒢𝑟(𝑘, 𝑛)
Γ ⟼ [𝐶0𝑉 cos(Σ) + 𝑈 sin(Σ)] , (i.19)

where the quantities are computed from the (thin) singular value decomposition of Γ
𝑈Σ𝑉T ≔ Γ. (i.20)

The cosinus and sinus functions only act on the diagonal elements of the matrix Σ.

Admitted proof. □
In the following, we will often omit using equivalence classes when no confusion is possible.

Proposition – Definition vi.a.2 (Grassmannian logarithm).— Let [𝐶0], [𝐶] ∈ 𝒢𝑟(𝑘, 𝑛).
Then the Grassmannian logarithm of the element [𝐶] with respect to point [𝐶0] is

Log𝒢𝑟,[𝐶0] ∶ 𝒢𝑟(𝑘, 𝑛) ⟶ T[𝐶0]𝒢𝑟(𝑘, 𝑛)
[𝐶] ⟼ 𝑉 arctan(Σ)𝑈T , (i.21)

where the quantities are computed from the (thin) singular value decomposition of 𝐿
𝑈Σ𝑉T ≔ 𝐿, (i.22)

where 𝐿 = (𝐶T𝐶0)−1𝐶T − 𝐶T0. (i.23)
The arctangent function only acts on the diagonal elements of the matrix Σ.

Admitted proof. □
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Chapter vi Density matrices extrapolation

Density matrices can thus be approached by Grassmannian exponentials of linear combinations
of elements in the tangent space

𝐷𝜇 ≈ 𝐶𝐶T, where 𝐶 ≔ Exp𝒢𝑟,0
⎛⎜⎜⎜⎜⎜⎝∑

𝑖
𝑐𝜇,𝑖Γ𝑖

⎞⎟⎟⎟⎟⎠ . (i.24)

Intuition behind themethod

As we recall, works from Cancès et al. [Can+07] and Maday and Razafison [MR08] seem to
show that density matrices are a set of points with a small Kolmogorov 𝑛-width. We want to
take advantage of this property in the tangent space, with the hope that the transformation does
not increase (too much) the width.

Definition vi.a.4 (Kolmogorov 𝑛-width).— Let 𝒳 be a normed linear space, 𝒮 be a subset
of 𝒳 and 𝒳𝑛 be a generic 𝑛-dimensional subspace of 𝒳𝑛. The deviation of 𝒮 from 𝒳𝑛 is given by

𝐸(𝒮,𝒳𝑛) ≔ sup𝑢∈𝒮 inf𝑣𝑛∈𝒳𝑛
|𝑢 − 𝑣𝑛|𝒳. (i.25)

The Kolmogorov 𝑛-width of 𝒮 is defined by

𝑑𝑛(𝒮,𝒳) ≔ inf𝒳𝑛
sup𝑢∈𝒮 inf𝑣𝑛∈𝒳𝑛

|𝑢 − 𝑣𝑛|𝒳. (i.26)

It measures how well 𝒮 can be approximated by an 𝑛-dimensional subspace of 𝒳. A schematic
representation is shown in shown in the right panel of Fig. vi.2.
If the Kolmogorov 𝑛-width is small, then there exists a small reduce basis on which we can

approximate any parameter values. However this is a theoretical results, and does not give a way
to construct the basis.

We expect that for all 𝑖 ∈ ⟦1 . . 𝑁𝜇⟧, the tangent elements

Γ𝑖 ≔ Log𝒢𝑟,0(𝐷𝑖) ∈ T𝐷0𝒢𝑟 (i.27)

are highly linearly dependant. So there exists a low dimensional basis (𝑛 ll 𝑁𝜇)
{Θ1,… ,Θ𝑛} ∈ T𝐷0𝒢𝑟 (i.28)

such that 𝒟0,T ≔ {Γ𝜇 || 𝜇 ∈ ℙ} ⊆ T𝐷0𝒢𝑟 (i.29)
can be well approximated by elements of the 𝑛-dimensional space

𝕍rb ≔ Span {Θ1,… ,Θ𝑛} ⊆ T𝐷0𝒢𝑟. (i.30)

In Fig. vi.2, we give a schematic representation, as well as a link between this and the
Kolmogorov 𝑛-width.

VI.B Application to normal modes

We have used the previous results to be able to provide good initial guesses for the self-consistent
field method of Hartree–Fock or density functional theory. First, we will develop this to a
case where the nuclear coordinates are changed along a few user-specified collective variables.
We choose to look at displacements along molecular normal modes of vibration. This has the
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ℳrb𝒟
𝒟0,T 𝕍rb

𝐷0

T𝐷0𝒢𝑟

𝒢𝑟

𝒳opt
𝑛

𝒳𝑛

𝑑𝑛(𝒮,𝒳)
𝐸(𝒮,𝒳𝑛)

Figure vi.2: On the left is a schematic illustration of the geometrical setting. We illustrate by
the blue hypersurface the Grassmann manifold 𝒢𝑟 and by the transparent plane the
tangent space T𝐷0𝒢𝑟 to 𝒢𝑟 at 𝐷0. We schematically illustrate the notions of 𝒟0,T
and 𝕍rb, as well as their equivalent sets 𝒟 = {𝐷𝜇

|| 𝜇 ∈ ℙ} and ℳrb = Exp𝒢𝑟,0(𝕍rb)
on 𝒢𝑟. On the right is a link between the representations of the Kolmogorov 𝑛-width
and the objects of the Grassmannian. We can identify 𝒮 ≅ 𝒟0,T and 𝒳𝑛 ≅ 𝕍rb.

(1, 0) (2, 0) (3, 0)

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

Figure vi.3: Schematic representation of the parameter space along two normal modes for the
formaldehyde (H2CO). The positions of the atoms are projected on two axes.
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Chapter vi Density matrices extrapolation

advantage of providing real-case displacements while having the possibility to have a few degrees
of freedom that we know explicitly. For more detail on this method, we refer the reader to an
article we have published [Pol+20] and an overview of the results Page 161.

The vibrational normal modes of a molecular system are obtained by diagonalisation of the
mass-weighted Hessian matrix of the energy at a local minimum of energy. The eigenvalues
correspond to the square of the normal mode vibrational frequencies, and the eigenvectors to
the amplitude of displacements along normalised coordinates. For all our example we chose a
normal mode corresponding to the carbonyl C–O stretching (one- and two-dimensional case)
and optionally a second corresponding to a low-frequency collective vibration (two-dimensional
case). We refer to Fig. vi.3 for a schematic representation.

In this case, we will allow a large computational cost for data generation of some collective
variables that can be stored, as long as the on-the-fly cost for evaluating new variables is negligible
compared to the self-consistent field computations. We want the method to be robust with respect
to change of basis set, and to work for a large range of displacements in the self-consistent field
energy.

VI.B.1 One-dimensional case

For the one-dimensional case, we developed a basic scheme. A number 𝑁𝑔 of displacements along
one normal mode gives us 𝑁𝑔 points in the tangent space of one of the density matrices, which
we can choose arbitrarily. From these snapshots, we select the ones to be chosen as a basis for a
Lagrangian interpolation in a greedy way: we add functions that are approximated the worst by
the current interpolant Γ𝑛app Γ𝑛+1 = argmaxΓ𝑖

||Γ𝑖 − Γ𝑛app(𝜇𝑖)||. (ii.1)
.

VI.B.2 Two-dimensional case

We assume to have a two-dimensional grid of 𝑁𝑔 ×𝑁𝑔 elements in the tangent space of one of the
density matrices. We want to find a function 𝐿𝑖 ∶ ℙ → R and a reduced basis {Θ1,… ,Θ𝑛} such
that

Γapp(𝜇) ≔
𝑛∑
𝑖=1

𝐿𝑖(𝜇)Θ𝑖 (ii.2)

is a good approximation of Γ(𝜇) ≔ Log𝒢𝑟,0(𝐷𝜇) for all 𝜇 ∈ ℙ.
Below is the outline of the steps for the method.

1. Create a matrix of monomes 𝑃 of size 𝑁𝑝 × 𝑑.
2. Extract 𝑑 lines from this matrix to create a square matrix ̂𝑃 ∈ R𝑑×𝑑.
3. We can form the matrix

Γ̃app ≔
𝑑∑

𝑖=1
𝜆𝑖(𝜇)Γ(𝜇𝜎(𝑖)). (ii.3)

Note that 𝜆𝑖(𝜇) ≔ 𝑃(𝜇) ̂𝑃−1. Hence it is an interpolation of Γ at points 𝜇𝜎(𝑖), 𝑖 ∈ ⟦1 . . 𝑑⟧: if 𝜇
has been chosen as a line for 𝑃, then 𝑃(𝜇) ̂𝑃−1 = (0,… , 0, 1,… , 0), where 1 corresponds to
the matrix Γ𝜎(𝑖).

4. We do an svd of Γ(𝜇𝜎(𝑖)) to form the Θ𝑖.
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vi.c Application to molecular dynamics

In the case where we have only one normal mode, then 𝑃 is the Vandermonde matrix, which
inverse is a matrix of Lagrange polynomials, similarly as in the 1D case.

We did not consider dimensions higher than the two-dimensional case; however we think that
the method we describe here should be applicable up to half a dozen normal modes. At which
point we expect the curse of dimensionality to bite us due to a large amount of data to consider,
such as to correctly sample the parameter space.

VI.C Application tomolecular dynamics

The results of the previous paragraph are interesting, but the applications are quite narrow. We
would like to be able to predict density matrices for any conformation of the molecules. For such
a general case, we may want to look at molecular dynamics, where the number of degrees of
freedom is the cube of the number of atoms. If we consider conformations near a local minimum,
we may hope that each successive conformation during time are not completely random, but may
follow a path with some regularity.

The obvious set of parameters available when doing molecular dynamics are the time-steps
and the positions of the atoms. In the supporting article Page 152, we have developed such a
method using a simple least-squares method on molecular descriptors — functions that depends
on atomic positions. Schematically, the density matrices 𝐷𝑖 for 𝑖 ∈ ⟦1 . . 𝑁𝑡⟧ are first projected on
tangent space of some reference matrix 𝐷0, using the logarithm function

Γ𝑖 = Log𝐷0(𝐷𝑖). (iii.1)

Then, by using the coefficients 𝑐𝑖 from the least-squares, we can do a linear combination on the
tangent space, and retract it on the Grassmann manifold to have the guess

𝐷app ≔ Exp𝐷0

⎛⎜⎜⎜⎜⎜⎜⎝
𝑁𝑡∑
𝑖=1

𝑐𝑖Γ𝑖
⎞⎟⎟⎟⎟⎟⎠ . (iii.2)

The results on real test-cases are encouraging, as we were able to decrease by in some cases
more than a third the number of self-consistent field iterations needed to have a desired accuracy
when compared to using the extended Lagrangian method of Niklasson [Nik08]. A natural next
step would be to implement that method for geometry optimisation.
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ABSTRACT: Born−Oppenheimer molecular dynamics (BOMD)
is a powerful but expensive technique. The main bottleneck in a
density functional theory BOMD calculation is the solution to the
Kohn−Sham (KS) equations that requires an iterative procedure
that starts from a guess for the density matrix. Converged densities
from previous points in the trajectory can be used to extrapolate a
new guess; however, the nonlinear constraint that an idempotent
density needs to satisfy makes the direct use of standard linear
extrapolation techniques not possible. In this contribution, we
introduce a locally bijective map between the manifold where the
density is defined and its tangent space so that linear extrapolation
can be performed in a vector space while, at the same time,
retaining the correct physical properties of the extrapolated density
using molecular descriptors. We apply the method to real-life, multiscale, polarizable QM/MM BOMD simulations, showing that
sizeable performance gains can be achieved, especially when a tighter convergence to the KS equations is required.

1. INTRODUCTION

Ab initio Born−Oppenheimer molecular dynamics (BOMD) is
one of the most powerful and versatile techniques in
computational chemistry, but its computational cost represents
a big limitation to its routine use in quantum chemistry. To
perform a BOMD simulation, one needs to solve the quantum
mechanics (QM) equations, usually Kohn−Sham (KS) density
functional theory (DFT), at each step, before computing the
forces and propagating the trajectory of the nuclei. The
iterative self-consistent field (SCF) procedure is expensive, as
it requires to build, at each iteration, the KS matrix and to
diagonalize it. Convergence can require tens of iterations,
making the overall procedure, which has to be repeated a very
large number of times, very expensive. To reduce the cost of
BOMD simulations, it is therefore paramount to be able to
perform as little iterations as possible while, at the same time,
obtaining an SCF solution accurate enough to afford stable
dynamics. From a conceptual point of view, at each step of a
BOMD simulation, a map is built from the molecular geometry
to the SCF density and then to the energy and forces. The
former map, in practice, requires the solution to the SCF
problem and is not only very complex but also highly
nonlinear. However, the propagation of the molecular
dynamics (MD) trajectory uses short, finite time steps so
that the converged densities at previous steps, and thus at
similar geometries, are available. As a consequence, the
geometry to the density map can be in principle approximated
by extrapolating the available densities at previous steps. The
formulation of effective extrapolation schemes has been the

object of several previous works.1 Among the proposed
strategies, one for density matrix extrapolation was developed
by Alfe,̀2 as a generalization of the wavefunction extrapolation
method by Arias et al.,3 which is based on a least-squares
regression on a few previous atomic positions. The main
difficulty in performing an extrapolation of the density matrix
stems from the nonlinearity of the problem. In other words, a
linear combination of idempotent density matrices is not an
idempotent density matrix, as density matrices are elements of
a manifold and not of a vector space. To circumvent this
problem, strategies that extrapolate the Fock or KS matrix4,5 or
that use orbital transformation methods6−8 have been
proposed.
A completely different strategy has been proposed by

Niklasson and co-workers.9−11 In the extended Lagrangian
Born-Oppenheimer (XLBO) method, an auxiliary density is
propagated in a time-reversible fashion and then used as a
guess for the SCF procedure. The strategy is particularly
successful, as it combines an accurate guess with excellent
stability properties. In particular, the XLBO method allows one
to perform accurate simulations converging the SCF to average
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values [for instance, 10−5 in the root-mean-square (RMS)
norm of the density increment], which are usually insufficient
to compute accurate forces. An XLBO-based BOMD strategy
has been recently developed by some of us in the context of
polarizable multiscale BOMD simulations of both ground and
excited states.12−15 Multiscale strategies can be efficiently
combined, in a focused model spirit, to BOMD simulations to
extend the size of treatable systems. Using a polarizable
embedding allows one to achieve good accuracy in the
description of environmental effects, especially if excited states
or molecular properties are to be computed. In such a context,
the XLBO guessing strategy allows one to perform stable
simulation even using a modest 10−5 RMS convergence
threshold, which, thanks to the quality of the XLBO guess,
typically requires only about four SCF iterations. Recently,
SCF-less formulations of the XLBO schemes have also been
proposed.16,17

Unfortunately, the performances of the XLBO-based BOMD
scheme are not so good when a tighter SCF convergence is
required, which can be the case when one wants to perform
MD simulations using post Hartree−Fock (HF) methods or
for excited states described in a time-dependent DFT
framework.14,18 In fact, such methods require the solution to
a second set of QM equations which are typically nonvaria-
tional, making them more susceptible to numerical errors and
instabilities. Computing the forces for non-SCF energies
therefore requires a more accurate SCF solution.
The present work builds on all previous methods for density

matrix extrapolation and aims at proposing a simple framework
to overcome the difficulties associated with the nonlinearity of
the problem. The strategy that we propose is based on a
differential geometry approach and is particularly simple. First,
we introduce a molecular descriptor, that is, a function of the
molecular geometry and other molecular parameters that
represent the molecular structure in a natural way that respects
the invariance properties of the molecule within a vector space.
At the (n + 1)-th step of an MD trajectory, we fit the new
descriptor in a least-square fashion using the descriptors
available at a number of previous steps and obtain a new set of
coefficients. However, we do not use them to directly
extrapolate the density. Instead, we first map the unknown
density matrix that we aim to approximate from the manifold
where it is defined to its tangent space. We then perform the
extrapolation to approximate the representative density matrix
in the tangent space, before mapping this approximation back
to the manifold in order to obtain an extrapolated density
matrix that satisfies the required physical constraints. This
geometrical strategy, which has recently been introduced in the
context of density matrix approximation by us,19 allows one to
use standard linear extrapolation machinery without worrying
about the nonlinear physical constraints on the density matrix,
since both the space of descriptors and the tangent space are
vector spaces. As the mapping between the manifold and the
tangent space is locally bijective, no concerns about redundant
degrees of freedom (such as rotations that mix occupied
orbitals) arise. The map and its inverse, which are known as
Grassmann logarithm and exponential, are easily computed
and the implementation of the strategy is straightforward. We
shall denote this approach as Grassmann extrapolation (G-
Ext).
In this contribution, we choose a simple, yet effective

molecular descriptor, and, for the extrapolation, a least square
strategy. These are not the only choices. As our strategy allows

one to use any linear extrapolation technique, which can be in
turn coupled with any choice of molecular descriptor, more
advanced strategies can be proposed, including machine
learning. Our approach ensures that the extrapolated density,
independent of how it is obtained, satisfies all the physical
requirements of a density stemming from a single Slater
determinant.
The paper is organized as follows. In the upcoming Section

2, we present all necessary theoretical foundations required for
the development and implementation of the presented G-Ext
approach. Section 3 then presents detailed numerical tests
illustrating the performance of the extrapolation scheme,
including realistic applications of BOMD within a QM/
molecular mechanics (MM) context before we draw the
conclusion in Section 4.

2. THEORY

We consider ab initio BOMD simulations where the position

vector ∈R
M3 evolves in time according to classical

mechanics as

̈ =M t F t tR R( ) ( , ( ))i i i (1)

where ∈t F tR ( ), ( )i i
3 denote the position of the i-th atom

with mass Mi, respectively, and the force acting on it at time t.
We consider a general QM−MM method, but the setting also
trivially applies to pure QM models. The forces at a given time
t and position R of the nuclei arise from different interactions,
namely, QM−QM, QM−MM, and MM−MM interactions.
The computationally expensive part is to determine the state of
the electronic structure, which is modeled here at the DFT
level with a given basis set of dimension . Note that
considering HF instead of DFT would not change much in the
presentation of the method. It consists of computing the
instantaneous nonlinear eigenvalue problem

=

=

=

F D C S C E

C S C

D C C

( )

IdN

R R R R R R

R R R

R R R

T

T

lmoooooonoooooo (2)

where ∈ ×C N
R

 and ∈ ×D
R

 denote the coefficients,
respectively, of the occupied orbitals and density matrix and

∈ ×E N N
R

 denotes the diagonal matrix containing the energy
levels. Furthermore, FR denotes the DFT operator acting on
the density matrix and S

R denotes the customary overlap
matrix.
At this point, it is useful to note that the slightly modified

coefficient matrix ̃ ≔C S C
R R R

1/2 belongs to the so-called
Stiefel manifold defined as follows

≔ { ∈ | = }×t N V V V( , ) IdN
N

T (3)

due to the second equation in eq 2. In consequence, the
normalized density matrix D̃R = C̃RC̃R

T = SR
1/2DRSR

1/2 belongs
to the following set

≔ { ∈ | = = = }×r N D D D D D D N( , ) , , Tr2 T
(4)

which can be identified with the Grassmann manifold of N-

dimensional subspaces of  by means of the spectral
projectors. In the following, we always assume that the density
matrix has been orthonormalized and therefore drop the ∼
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from the notation. For any ∈D r N( , ), one can associate
the tangent space D which has the structure of a vector space.
The evolution of the electronic structure can therefore be seen
as a trajectory →t D tR( ) on r N( , ) where →t tR( )

denotes the trajectory of the nuclei.
The goal of the present work is to find a good approximation

for the electronic density matrix at the next step of MD
trajectory by extrapolating the densities at previous steps. More
precisely, based on the knowledge of the density matrices

≔D Di tR( )i
, i = n − Nt, ..., n − 1, at Nt previous times ti, one

aims to compute an accurate guess of the density matrix Dn at
time tn.
Thus, the problem formulation can be seen as an

extrapolation problem of the following form: given the set of
couples t DR( ( ), )i i and a new position vector tR( )n provide a
guess for the solution Dn. Here and in the remaining part of the
article, we restrict ourselves on the positions of the QM atoms,
that is, with slight abuse of notation, we denote from now on
by R the set of QM positions only, even within a QM−MM
context.
In order to approximate the mapping → DR

R , we split this
mapping in several submaps that will be composed as follows

→ → →

→ → Γ → = Γ

r N

d DR

( , )

Exp ( )

M
D

DR R R R

3
0

0



(5)

where the first line shows the concatenation of maps in terms
of spaces and the second in terms of variables. The different
mappings will be presented and motivated in the following.
The first map is a mapping of the nuclear coordinates

∈R
M3 to a (possibly high-dimensional) molecular descrip-

tor that accounts for certain symmetries and invariances of the
molecule. The last map, known as the Grassmann exponential,
is introduced in order to obtain a resulting density matrix
belonging to r N( , ) and thus to guarantee that the guess
fulfils all properties of a density matrix. As r N( , ) is a
manifold, this is not straightforward. The second mapping is
the one that we aim to approximate but before we do that let
us first introduce those two special mappings, that is, the
molecular descriptor and the Grassmann exponential, in more
details.
2.1. Molecular Descriptors. The map → dR

R
is a map

from atomic positions to molecular descriptors. These
descriptors are used as fingerprints for the considered
molecular configurations. Such molecular descriptors have
been widely used in the past decades, for example, to learn
potential energy surfaces (PESs)20−26 or to predict other
quantities of interest. Among widely used descriptors, one can
find Behler−Parinello symmetry functions,27 Coulomb ma-
trix,21 smooth overlap of atomic positions (SOAP),28 permuta-
tionally invariant polynomials,29 or the atomic cluster
expansion (ACE).30,31 These molecular descriptors are usually
designed to retain similar symmetries as the targeted quantities
of interest.
In this work, the quantity we are approximating is the

density matrix, which is invariant with respect to translations
and permutations of like particles. The transformation of the
density matrix with respect to a global rotation of the system
depends on the implementation, as it is possible to consider
either a fixed Cartesian frame or one that moves with respect
to the molecular system. In the former case, there is an

equivariance with respect to rotations of the molecular system,
while in the latter, the density matrix is invariant. We should
therefore in principle use a molecular descriptor satisfying
those properties.
However, the symmetry properties we will rely on are mostly

translation and rotation invariance. Therefore, we will use a
simple descriptor in the form of the Coulomb matrix denoted
by dR, given by

=

=

|| − ||

d

z i j

z z

t tR R

( )

0.5 if

( ) ( )
otherwise

ij

i

i j

i j

R

2.4lmoooooonoooooo (6)

Note that such a descriptor is not invariant (nor equivariant)
with respect to permutations of identical particles. However,
we have found this descriptor to offer a good trade-off between
simplicity and efficiency. Note that since we aim to extrapolate
the density matrix from previous time steps, permutations of
identical particles never occur from one time step to another
and we do not need to rely on this property. Nevertheless, we
expect that a better description could be achieved using more
flexible descriptors, such as ACE polynomials or the SOAP
descriptors, where the descriptors themselves can be tuned.

2.2. Grassmann Exponential. We only give a brief
overview as the technical details have already been reported
elsewhere,19,32,33 and are recapitulated in the Supporting
Information. The set r N( , ) is a smooth manifold and thus,
at any point, say ∈D r N( , )0 in our application, there
exists the tangent space D0

such that one can associate nearby

points ∈D r N( , ) to tangent vectors Γ ∈D( ) D0
. The

mapping → = ΓD D DLog ( ) ( )
D0

is known as the Grassmann

logarithm and its inverse mapping is known as the Grassmann
e x p o n e n t i a l Γ → Γ = DExp ( )

D0
. F u r t h e r m o r e ,

=DLog ( ) 0
D 0
0

and = DExp (0)
D 0
0

. These mappings are not

only abstract tools from differential geometry but can also be
computed by means of performing a singular value
decomposition (SVD).19,32,33 In our application, we use the
same reference point D0 in all cases which brings some
computational advantages as will be discussed in more detail in
the upcoming Section 2.3.

2.3. Approximation Problem. Since the tangent space

D0
is a (linear) vector space, we can now aim to approximate

the mapped density matrix on the tangent space D0
. To

simplify the presentation, we shift the indices in the following
and describe the extrapolation method for the first Nt time
steps. In the general setting, we should consider the positions
R(ti) for i = n − Nt, ..., n − 1, to extrapolate the density matrix
at position R(tn), where n is the current time step of the MD.
We look for parameter functions ci such that, given previous
snapshots Γi = Log(Di) for i from 1 to Nt, corresponding to
some R(ti)’s, the approximation of any density matrix on the
tangent space is written as

∑→ Γ = Γ ∈
=

cR R( )
i

N

i i DRapp

1

,

t

0
(7)

with Γ = Γi tR( )i
.

The question is then how to find these coefficient functions
c iR, and we propose to find those via the resolution of a
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(standard) least-square minimization problem. For a given

position R, we look for coefficients that minimize the l2-error
between the descriptor dR and a linear combination of the
previous ones dR(ti)

∑−
∈

=

d c dmin
c

i

N

i tR R R

1

, ( )

2

Nt

t

i
R  (8)

In the matrix form, this simply reads

|| − ||
∈

d P cmin
c

R R

T 2
Nt

R  (9)

where P is the matrix of size Nt × Nd containing the descriptors
Pi,j ≔ (dR(ti))j. Note that we only fit on the level of the

descriptor, that is, the mapping from the position vector R to
the descriptor dR and that this method is similar to the ones
used by Alfe ̀2 and Arias et al.,3 where the descriptors they used
were the positions of the atoms and only considered the
previous three time steps of the MD.
If the system is underdetermined, we select the vector cR that

has the smallest norm. However, in general, the system is
overdetermined as we have more descriptors than snapshots.
This implies that this formulation verifies the interpolation
principle: for every i and j from 1 to Nt, the solution of
problem (8) at the positions R(tj) satisfies cR(tj)i = δji.

In principle, should we consider a large amount of previous
descriptors, then the system may become undetermined and
violate the interpolation principle. To mitigate this, we can use
a stabilization scheme, as explained in the upcoming
subsection.
Note that once we have computed the coefficients cR by

solving problem (12), one computes the initial guess for the
density using the same coefficients in the linear combination
on the tangent space as in eq 7 and finally takes the exponential
(see eq 5). The rational for this step is that if the second
mapping in eq 5, which we denote here by →: D0

, was

linear, then there would hold

∑ ∑ ∑= = Γ
= = =

c d c d c( )
i

N

i

i

N

i

i

N

i iR R R R R

1

,

1

,

1

,

t

i

t

i

tikjjjjjj y{zzzzzz (10)

In practice, the mapping is, however, not linear and this
approach works well in the test cases we considered. A possible
explanation for this is the unfolding of the nuclear coordinates
into a high-dimensional descriptor-space . Indeed, the high-
dimensionality of seems to allow an accurate approximation
of by a linear map. Furthermore, if the system is
overdetermined, the scheme satisfies the interpolation property

Γ = Γ tR( ( ))j j , and hence, we recover the expected density

matrix = ΓD PExp ( )t D jR( )j 0
.

2.3.1. Stabilization. To stabilize the extrapolation by
limiting high oscillations of the coefficients, we apply a
Tikhonov regularization

∑ ε− + || ||
∈

=

d c d cmin
c

i

N

iR R R R

1

,

2

2
Nt

t

i
R 

i
k
jjjjjjjj y

{
zzzzzzzz (11)

for some choice of ε. This problem is always well-posed and
corresponds to solving the following problem

||
∼

− ̃ ||
∈

d P cmin
c

R R

T 2
Nt

R  (12)

where
∼

∈ +d N N
R

d t is the vector dR padded with Nt zeroes and
̃ ∈ × +P N N Nt d t  is the P matrix padded with the square

diagonal matrix εIdNt
. We observe in practice that using such a

stabilization makes possible to use more previous points
without degradation of the initial guess.

2.4. Final Algorithm. Given previous density matrices
DR(tj) for j = 1, ..., Nt, the initial guess is computed following

Algorithm 1. That is, we start by computing the logarithms of
the density matrices DR(tj), from the coefficients CR(tj) that are

first orthonormalized by performing C̃R = SR
1/2CR. Here, we

remark that we assume that the density matrices DR(tj) have

been previously Löwdin orthonormalized.
We then compute the descriptors needed to build the P̃

matrix and solve problem (12). This provides the coefficients
in the linear combination of the Γi’s on the tangent space.
Finally, we compute the exponential of the linear combination
in order to obtain the predicted density matrix.
Note that the reference point D0 is chosen once and for all,

which makes the computations of these logarithms lighter,
even though there is no theoretical justification for keeping a
single point D0 as a reference. Indeed, it is known that the
formulae are only correct locally (around D0) on the manifold.
However, in practice, we have never observed the need to
change the reference point. This enables us to compute only
one logarithmic map per time step and hence, only two SVDs
in total per time step. To have a robust algorithm that will
work even in this edge case, it will be sufficient to check that
the exponential and logarithmic maps are still inverse of one
another.
Finally, to be on the safe side with respect to the

computations of the exponential, we have added a check on
the orthogonality of the matrix that is obtained: if the residue is
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higher than a certain threshold, we then perform an
orthogonalization of the result.

3. NUMERICAL TESTS

In this section, we present a series of numerical tests of the
newly developed strategy. We test our method on four
different systems. All the systems have been an object of a
previous or current study by some of us and can therefore be
considered representative of real-life applications.
The first system is 3-hydroxyflavone (3HF) in acetonitrile.18

Two systems (OCP and APPA) are chromophores embedded
in a biological matrixnamely, a carotenoid in the orange
carotenoid protein (OCP) and avine in acid phosphatase
(APPA), a blue light-using flavine photoreceptor.34−36 The
fourth system is dimethylaminobenzonitrile (DMABN) in
methanol.14 The main characteristics of the systems used for
testing are recapitulated in Table 1.

The systems used for testing include a quite large QM
chromophore, the OCP, and three medium-sized systems,
embedded in large- (APPA and 3HF) and medium-sized
environments (DMABN), and are representative of different
possible scenarios.
To test the performances of the new G-Ext strategy, we

performed three sets of short (1 ps) multiscale BOMD
simulations on OCP, APPA, 3HF, and DMABN. KS density
functional theory was used to model the QM subsystem, using
the B3LYP37 hybrid functional and Pople’s 6-31G(d) basis
set.38 For the stability and energy conservation of the method,
we did a longer and more realistic simulations of 10 ps on
3HF, where the flavone moiety was described using the ωB97X
hybrid functional39 and Pople’s 6-31G(d) basis set. In all cases,
the environment was modeled using the AMOEBA polarizable
force field.40

All the simulations have been performed using the
Gaussian−Tinker interface previously developed by some of
us.12,13 In particular, we use a locally modified development

version of Gaussian41 to compute the QM, electrostatic, and
polarization energy and forces and Tinker42 to compute all
other contributions to the QM/MM energy. We implemented
the G-Ext extrapolation scheme in Tinker that acts as the main
driver for the MD simulation, being responsible of summing
together all the various contributions to the forces and
propagating the trajectory. At each MD step, using the
GauOpen interface,43 the density matrix, molecular orbital
(MO) coefficients, and overlap matrix produced by Gaussian
are retrieved. These are used to compute the extrapolated
density, as described in Section 2. The density is then passed
back to Gaussian to be used for the next MD step. All the
simulations were carried out in the NVE ensemble, using the
velocity Verlet integrator and a 0.5 fs time step. Concerning
stabilization, we found that good overall results were obtained
using a parameter ε ≔ 103 × rscf, where rscf is the tolerance of
the SCF algorithm.

3.1. Numerical Results. To assess the performance of the
G-Ext guess, we perform 1 ps MD simulations on the four
systems described in Section 3 starting from the same exact
conditions (positions and initial velocities) and using various
strategies to compute the guess density for the SCF solver. We
compare various flavors of the G-Ext method with the XLBO
extrapolation scheme.10 Here, we note that the original XLBO
method performs a propagation of an auxiliary density matrix,
which is then used as a guess. The latter is not idempotent: to
restore such a property, we perform a purification step at the
beginning of the SCF procedure using McWeeny’s algorithm.44

In the following, we therefore compare our method, where we
use 3 to 6 previous points for the fitting and extrapolation, to
both the standard XLBO and to XLBO followed by
purification (XLBO/MW). We use an SCF convergence
threshold of 10−5 with respect to the RMS variation of the
density.
We report in Table 2, for each method, the average number

of SCF iterations performed along the MD simulation together
with the associated standard deviation. As the XLBO strategy
requires eight previous points, during which a standard SCF is
performed, we discard the first points from the evaluation of
the aforementioned quantities to have a fairer comparison.
We do not report the total time required to compute the

guess, as it is in all cases very small (up to 0.1 s wall clock time
for the largest system using the G-Ext(6) guess). This is an
important consideration, as the G-Ext method requires one to
perform various linear-algebra operations (in particular, thin
SVD) that can in principle be expensive. Thanks to the

Table 1. Overview of the System Size in Terms of Number
of QM Atoms (NQM), Number of MM Atoms (NMM), and
the Total Number of QM Basis Functions ( )

system NQM NMM

OCP 129 4915 1038

APPA 31 16,449 309

DMABN 21 6843 185

3HF 28 15,018 290

Table 2. Performances of the G-Ext Method for Different Numbers of Extrapolation Points, Compared with the XLBO
Algorithm with and without McWeeny Purificationa

OCP DMABN APPA 3HF

method average σ average σ average σ average σ

XLBO 3.82 0.66 3.98 0.16 3.00 0.03 4.00 0.14

XLBO/MW 2.95 0.31 3.76 0.56 3.00 0.34 3.96 0.31

G-Ext(3) 2.57 0.84 3.54 0.78 2.95 0.50 3.09 0.41

G-Ext(4) 2.48 0.88 3.14 0.62 2.51 0.50 3.25 0.68

G-Ext(5) 2.25 0.96 3.23 0.75 2.51 0.50 3.30 0.72

G-Ext(6) 2.20 0.96 2.99 0.02 2.51 0.50 3.14 0.56

aAll the results were obtained using a 10−5 convergence threshold for the RMS increment of the density matrix and are derived from a 1 ps long
MD simulation, using a 0.5 fs time step. We report the average number of iterations required to converge the SCF, together with the associated
standard deviation. Note that the first eight steps were discarded.
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availability of optimized LAPACK libraries, this is in practice
not a problem.
From the results in Table 2, we see that the G-Ext

algorithms systematically outperforms the XLBO method. It is
interesting to note that the McWeeny purification step has a
sizeable effect on the performances of the XLBO method only
for the largest system, OCP, where it results in the gain of
almost one SCF iteration on average. On the other systems,
the purification step has a smaller effect.
In all the systems we tested, the performances of the G-Ext

method are systematically better than in XLBO, including
McWeeny purification. The effectiveness of the G-Ext
extrapolation increases when going from 3 to 6 points but
quickly stagnates. We have performed further tests with more
than 6 (up to 20) extrapolation points but never noted any
further gain.
We observe a reduction in the number of iterations that goes

from 0.5 in DMABN to 0.75 in OCP (1.62 when compared to
XLBO without McWeeny purification). We remark that these
gains, while apparently not so large, are greatly amplified
during the MD simulation, due to the large number of steps
that need to be performed.
The tests performed with a 10−5 convergence threshold are

representative of a standard, DFT ground-state BOMD
simulation. When performing a more sophisticated quantum
mechanical calculation, such as a BOMD on an excited-state
PES,18 such a convergence threshold may not be sufficient to
guarantee the stability of the simulation, as the SCF solution is
used to set up the linear response equations and the numerical
error can be amplified, resulting in poorly accurate forces.
We tested the G-Ext algorithm in its best-performing

version, the one that uses six extrapolation points, with a
tighter, 10−7 threshold, again for the RMS variation of the
density. The results are reported in Table 3, where we compare
the G-Ext(6) scheme with the XLBO method with McWeeny
purification.

The XLBO method is based on the propagation of an
auxiliary density, and therefore, the accuracy of the guess it
generates depends little on the accuracy of the previous SCF
densities. As a consequence, its performances are reduced if a
tighter convergence is required. The G-Ext guess, on the other
hand, uses previously computed densities as its building blocks
and one can expect the accuracy of the resulting guess to be
linked to the convergence threshold used during the
simulation.
This is exactly what we observe. Using a threshold of 10−7,

the G-Ext(6) guess exhibits significantly better performances
than XLBO, gaining, on average, from about 0.7 to about 3
SCF iterations on the tested systems.

3.1.1. Stability. The good performances of the G-Ext guess
come, however, at a price, namely, the lack of time reversibility.
We can thus expect the total energy in an NVE simulation to
exhibit a long-time drift (LTD). Time reversibility and long-
time energy conservation are, on the other hand, one of the
biggest strengths of the XLBO method.
To investigate the stability of BOMD simulations using the

G-Ext guess, we build a challenging case, where we start a
BOMD simulation far from well-equilibrated conditions. We
use the 3HF system as a test case and achieve the noisy starting
conditions by starting from a well-equilibrated structure and
changing the DFT functional from B3LYP to ωB97XD. This
way, we have a physically acceptable structure, with no close
atoms or other problematic structural situations, but obtain
starting conditions that are far from equilibrium.
We report in Figure 1 the total energy along a 10 ps BOMD

simulation of 3HF in acetonitrile using either a 10−5 SCF
convergence threshold (left panel) or a 10−7 one (right panel).
The same results for a 10−6 threshold are reported in the
Supporting Information. We compare the G-Ext(3) and G-
Ext(6) methods to the XLBO one including McWeeny
purification. As already noted, while in principle the

Table 3. Performances of the G-Ext(6) Method Compared with the XLBO Algorithm with McWeeny Purificationa

OCP DMABN APPA 3HF

method average σ average σ average σ average σ

XLBO/MW 5.02 0.17 7.30 0.64 7.49 0.84 7.47 0.63

G-Ext(6) 3.58 0.79 4.23 0.50 4.39 0.57 6.81 0.78
aAll the results were obtained using a 10−7 convergence threshold for the RMS increment of the density matrix and are derived from a 1 ps long
MD simulation, using a 0.5 fs time step. We report the average number of iterations required to converge the SCF, together with the associated
standard deviation. Note that the first eight steps were discarded.

Figure 1. Total energy (kcal/mol) as a function of simulation time (fs) for 3HF comparing G-Ext(3), G-Ext(6), and XLBO with McWeeny
purification, using a convergence threshold for the SCF algorithm of 10−5 (left panel) and 10−7 (right panel). The total energy was shifted to
+505,000 kcal/mol for readability.
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purification may spoil the time reversibility, this has no
noticeable effect in practice.
The very noisy starting conditions are apparent from the

energy profiles that exhibit large oscillations in the first couple
of hundreds of femtoseconds.
To better estimate the short- and long-time energy stability,

we report in Table 4 the average short-time fluctuation (STF)

and LTD of the energy. The former is computed by taking the
RMS of the energy fluctuation every 50 fs and averaging the
results over the trajectory, discarding the first 500 fs, the latter
by fitting the energy with a linear function and taking the slope.
All methods show comparable short-term stability, which is

to be mainly ascribed to the chosen integration time step. On
the other hand, from both the results in Table 4 and Figure 1,
we observe a clear drift of the energy when the G-Ext method
is used. In particular, the system cools of about 10 kcal/mol
with either G-Ext(3) or G-Ext(6). The XLBO trajectory,
despite the McWeeny purification, exhibits an almost perfect
energy conservation.
These results are not surprising but should be taken into

account when choosing to use the G-Ext guess, which, if
coupled to a 10−5 SCF convergence threshold, cannot
guarantee long-term energy conservation. The drift is overall
not too large and can be handled using a thermostat. Whether
or not the trade between performances and energy
conservation is acceptable for a production simulation is a
decision that ultimately lies with the user.
Increasing the accuracy of the SCF computation improves

the overall stability for G-Ext, which is already good at 10−6

and becomes virtually identical to the one offered by the
XLBO method at 10−7.

4. CONCLUSIONS

In this contribution, we presented an extrapolation scheme to
predict initial guesses of the density matrix for the SCF
iterations within BOMD. What makes our approach new is
that we enforce the idempotency of the density matrix by
extrapolating not the densities themselves but their map onto a
vector space, which is the tangent plane to the manifold of the
physically acceptable densities. Such a map is locally bijective
so that after performing the extrapolation, we can map the new
density back to the original manifold, providing thus an
idempotent density. The main element of novelty of the
algorithm is that by working on a tangent space, it allows one
to use any linear extrapolation technique, while, at the same
time, automatically ensuring the correct geometrical structure
of the density matrix. As such, the technique presented in this
paper can be seen as a simple case of a more general
framework. Such a framework allows one to recast the problem

of predicting a guess density by extrapolating information
available from previous MD steps as a mapping between two
vector spaces, that is, the space of molecular descriptors and
the tangent plane. This geometric approach can be seen as an
alternative to extrapolating quantities derived from the density,
such as the Fock or Kohn−Sham matrix, as proposed by Pulay
and Fogarasi4 and by Herbert and Head-Gordon.5 However,
the framework we developed, using molecular descriptors and
a general linear extrapolation technique, can in principle be
easily extended to such approaches.
That being said, our choices of both the molecular

descriptor and of the extrapolation strategies are far from
being unique. In recent years, molecular descriptors gained
attraction within the rise of machine-learning (ML)
techniques. Our choice, namely, using the Coulomb matrix,
is only one of the many possibilities, and while being simple
and effective, more advanced descriptors may be used and
possibly improve the overall performances of the method. We
also used a straightforward (stabilized) least-square interpola-
tion of the descriptors at the previous point to compute the
extrapolation coefficients for the densities. This strategy is,
again, simple yet effective. However, many other approaches
can be used. In particular, ML techniques may not only
provide a very accurate approximated map but also benefit of a
larger amount of information (i.e., use the densities computed
at a large number of previous steps), further improving the
accuracy of the guess. Improvements on the descriptors and
extrapolation strategies are not the only possible extensions of
the proposed method. A natural extension that is under active
investigation is the application to the G-Ext guess to geometry
optimization, for which the XLBO scheme cannot be used.
Overall, even the simple choices made in this contribution

produced an algorithm that exhibits promising performances.
In all our tests, the G-Ext method outperformed the well-
established XLBO technique, especially for tighter SCF
accuracies which may be relevant for post-SCF BOMD
computations, including computations on excited-state PES.
While we tested the method only for KS DFT, it can also be
used for HF or semiempirical calculations. The main
disadvantage of the proposed strategy with respect to the
XLBO method is, however, the lack of time reversibility, which
manifests itself as a lack of long-term energy conservation. In
particular, for longer MD simulations, the total energy may
exhibit a visible drift, which is something that the user must be
aware of. In our test, the observed drift was relatively small and
the use of a thermostat should be enough to avoid problems in
practical cases; however, this is a clear, and expected, limitation
of the proposed approach. We note that using a tighter SCF
convergence, which is also the case where the proposed
method shows its best performances and produces an energy
conserving trajectory, even starting from very noisy conditions.
A time-reversible generalization of the G-Ext method is
anyways particularly attractive and is at the moment under
active investigation.

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00751.

Julia template of the G-Ext algorithm is available at
https://github.com/epolack/GExt.jl, figure representing
the total energy computation with an SCF convergence

Table 4. Short- and Long-Term Stability Analysis of the G-
Ext(3) and G-Ext(6) Methods, Compared to the XLBO
Algorithm with McWeeny Purification, for the 3HF Systema

conv. 10−5 conv. 10−6 conv. 10−7

method STF LTD STF LTD STF LTD

XLBO/MW 0.55 −0.04 0.55 −0.03 0.57 −0.03

G-Ext(3) 0.55 −0.42 0.57 −0.15 0.53 −0.04

G-Ext(6) 0.56 −0.53 0.52 −0.13 0.57 −0.04
aFor each method, we report the STF and the LTD and the average
number of SCF iterations, for three convergence thresholds of the
SCF algorithm.
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threshold of 10−6 for the molecule 3HF, and formulae
for the exponential and logarithm functions (PDF)
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Problem statement

When performing Density Functional Theory or Hartree–Fock calculations, quite a share of the
computational time comes from executing the self-consistent field iterations. Often, those cal-
culations have to be done for the same molecular system, but at different geometries, e.g., when
running ab-initio molecular dynamics simulations or geometry optimisations.

Although much has been done to develop convergence acceleration techniques for the self-
consistent field procedure, less is known on how to efficiently exploit the abundance of infor-
mation generated during previous computations to provide it with a good guess.

How can we make the most of repeated self-consistent field computations on the same molecular
system?

Objectives

We wish to provide an accurate guess to density matrices for the self-consistent field algorithm
with localised basis functions and where the nuclear coordinates are changed along a few user-
specified collective variables (Figure 1).

(1, 0) (2, 0) (3, 0)

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

Figure 1. Schematic representation of the parameter space along two normal modes for the formaldehyde. The
positions of the atoms are projected on two axes.

Wewill allow a large computational cost for data generation of some collective variables that can
be stored, as long as on-the-fly cost for a new variable is negligible. Moreover, the developed
method should not be affected by the choice of basis set and should work for a large range of
displacements in the self-consistent field energy.

To validate both the accuracy and robustness of our method, wewill try to improve on the number
of self-consistent field convergence iterations with Hartree–Fock of the following four amino-
acids: alanine, asparagine, phenylalanine and tryptophan (13, 17, 23 and 27 atoms, respectively).

A qualitative estimate of a reference for the number of iterations to improve upon is presented
in Table 1. The computations where done using Dunning’s cc-pVDZ basis set.

Alanine Asparagine Phenylalanine Tryptophan

Core 21 21 23 26
Harris 13 14 14 15
Hückel 16 17 17 18
MinAO 15 17 17 17
SAD 16 17 17 17

Table 1. Number of SCF iterations required to achieve convergence (max change in the density smaller than 10−6)
using different initial guesses. As the computations were carried out using different packages, that offer different
SCF implementations, this cannot be considered an accurate comparison between the various guesses, but only a
qualitative estimate of the number of required iterations. Note that all the calculations have been performed using
standard DIIS extrapolation.

We would like a method that computes an inexpensive and accurate guess to the self-consistent
field algorithm.

Results

With the cc-pVDZ basis set, the energy fluctuates of 9.1, 8.9, 8.5 and 7.6 kcal/mol for alanine,
asparagine, phenylalanine, and tryptophan, respectively. For alanine*, that has much larger dis-
placements, it is of well over 1000 kcal/mol. The aug-cc-pVTZ basis set was used for alanine+.
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various test systems. All the calculations were performed with CFOUR using the following convergence criteria
for the increment of the density ∆P : RMS ∆P < 10−7 and max |∆P | < 10−6.
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Frobenius norm error on the density guess as a function of the interpolation order for the 1D parameter space
(left panel) and the 2D parameter space (right panel). All the calculations were performed with CFOUR using the
following convergence criteria for the increment of the density ∆P : RMS ∆P < 10−7 and max |∆P | < 10−6.

We can almost instantly predict the density matrices of all other configurations using only
a small number of data.

Methodology

From a mathematical point of view, the density matrices are on a Grassmannian smooth manifold.
This imply the existence a diffeomorphism that transforms the manifold into an affine space, the
tangent space, and back. The maps are the Grassmannian exponential and logarithm. This allows
us to apply well-known methods to approximate the elements in the tangent space, and then
map back the results to the manifold. This way we are assured that the final result is indeed still
a density matrix. See Figure 5 for a schematic description.

D

D0 Γ

TD0
MGr

MGr MrbD

D0,T
Vrb

D0

TD0
MGr

MGr

Figure 5. Schematic illustration of the geometrical setting. In both figures, we illustrate by the blue hypersurface the
Grassmann manifold MGr and by the transparent plane the tangent space TD0

MGr to MGr at D0. On the left, we
illustrate the one-to-one relationship between a close density matrix D ∈ MGr and the corresponding vector
Γ = LogMGr,0D in the tangent space. On the right, we further schematically illustrate the notions of D0,T and Vrb, as
well as their equivalent sets D = {Dp|p ∈ P} and Mrb = ExpMGr,0(Vrb) on MGr.

For example, the formulation of the Grassmannian exponential of some matrix Γ is

ExpMGr,0(Γ) = CC⊤, C = [C0V cos(Σ) + U sin(Σ)]V⊤,
where the quantities are computed from the singular value decomposition Γ

Γ = UΣV⊤.

Density matrices can then be approached by Grassmannian exponentials of linear combinations
of elements in the tangent space

D(p) ≈ ExpMGr,0





∑

i

ci(p)Γi



 .

We have used an offline/online paradigm. We store the density matrices of a few parameter
values. Then the knowledge of how the parameters vary makes the computation of the density
matrix for a new parameter almost immediately available.

The density matrix that is obtained can then be used as an initial guess to the self-consistent field
algorithm to speed-up the calculations.

We use basic properties from differential geometry to approximate density matrices with linear
combinations.

Perspectives

Promising results have been obtained when we tested amino-acids and the method seems both
accurate and robust.

However, this method is limited in its applications. We are thus exploring how to generalize it
when the variations of the parameters is not known. The method could then be used for ab-initio
molecular dynamics simulations and geometry optimisations.

We are eager to have a better understanding of the underlying mathematics and to apply this
method to a larger class of chemistry problems.
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